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Introduction
Software engineering is a relatively new and

immature discipline. One consequence of this imma-

turity is that software engineers, unlike their counter-

parts in the older branches of engineering, are unable

to assure the correctness of software designs before

they have been constructed. In contrast, civil engi-

neers can construct mathematical models of bridges

and buildings before they are built, and they can ana-

lyze the models to determine that the proposed struc-

tures have the desired properties. Any design errors

detected during this analysis are much cheaper to fix

than those that escape detection until after the con-

crete is poured.

Many design methodologies and computer-aided

software engineering (CASE) tools have been used in

attempts to provide a similar modeling and analysis

capability for software engineers. However, the infor-

mality of many of these software models limits their

effectiveness. Often, there is no well-defined notion of

what it means for a computer program to be a correct

implementation of a model, and it is often impossible

to execute or analyze the model to determine that its

behavior conforms with the designer’s expectations. In

the absence of such a capability, the correctness of a

software design cannot be ascertained until after the

code that implements it has been written. As a result,

computer programs usually contain many more

defects after construction than the products of other

engineering disciplines.

The virtual finite-state machine (VFSM) design

and implementation paradigm1,2 is an approach to

software modeling that addresses the limitations just

described. VFSM allows the software developer to

construct a formal, executable model of the control

behavior of a software module. Because the finite-

state machine model is formal, the control portion of

the implementation can be generated automatically

from the VFSM specification by means of a translation

tool. The executable nature of a VFSM model enables

a substantial amount of error checking to be per-

formed on it early in the design process. The VFSM

toolset includes both an interactive simulator that
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allows the developer to exercise execution scenarios

of a network of communicating VFSMs and a valida-

tor that attempts a systematic non-interactive search

for errors in all possible scenarios. These tools com-

plement each other well in that the simulator allows

the user to examine selected scenarios in detail and

to detect obvious errors, while in most cases the

exhaustive search performed by the validator finds

more subtle errors.

VFSM is specifically intended for modeling the

control behavior of a software module. Control behav-

ior is of primary importance in the design of many

Lucent Technologies software products. The structure

of the software for setting up a telephone call, for

example, centers around the stimuli it receives from its

environment—on- and off-hook signals, dialed digits,

messages from other telephone switches—and the

actions it takes in response to these stimuli. At a more

detailed level, these actions may involve data manipu-

lations, such as accesses to a subscriber database and

the recording of billing information. By allowing stim-

uli and actions to be represented in an abstract form,

the use of VFSM results in an implementation in

which the control structure is kept strictly separate

from the code devoted to data manipulations. This

separation of concerns provides a bird’s-eye view of

the structure of a software module that allows its con-

trol behavior to be understood and modified indepen-

dently of its data-related aspects.

Over the past several years, we have been

involved in the introduction of VFSM in a number of

Lucent organizations, including those responsible for

the software of the 5ESS® switching system. VFSM

has been enthusiastically received by software devel-

opers in these organizations, and as we describe in

more detail below, the use of VFSM has resulted in

software modules with fewer defects than those pro-

duced using traditional methods. A major factor in the

popularity of VFSM is that the effort required to con-

struct a VFSM specification is more than repaid by the

automation provided by the VFSM toolset—a single

textual representation of a VFSM serves as the basis

for automatic code and documentation generation, as

well as simulation and validation. Although the intro-

duction of VFSM has been successful, it has by no

means been easy. Our experience has been that tech-

nology transfer is not merely the last milestone in the

development of a new method but rather a continu-

ous process whose success requires a sustained effort

to eliminate barriers to the use of the new technology.

Following this introduction, the “VFSM Design

Paradigm” section presents an overview of the VFSM

design paradigm, including a comparison with related

design approaches and an example that shows how

VFSM is used to build abstract models of the events

and conditions that influence a module’s control

behavior and the actions it takes in response to them.

The “VFSM Implementation Paradigm” section

describes how these abstract entities are bound to con-

crete realizations by the VFSM implementation para-

digm. The “VFSM Toolset” section presents the

capabilities for design verification and code and docu-

mentation generation that are provided by the VFSM

toolset. The “Experience with VFSM in Lucent

Technologies” section discusses our experience with

VFSM, including the history of its introduction, some

data regarding the results of its use, and some exam-

ples of application areas in which it has been effec-

tively used. The paper concludes with a summary of

this discussion and our plans for future enhancements

to VFSM.

VFSM Design Paradigm
The fundamental VFSM design principle is one of

abstract modeling and specification. The paradigm pro-

motes the specification of control rather than pro-

Panel 1. Abbreviations, Acronyms, and Terms

ATM—automated teller machine
CASE—computer-aided software engineering
INAP—Intelligent Network Application Protocol
NCSL—noncommentary source lines
OFA—output function array
OSDS—Operating System for Distributed

Switching
PIN—personal identification number
PSU—packet switching unit
SDL—Specification and Description Language
VFSM—virtual finite-state machine
VIR—virtual input register
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gramming, and it focuses the abstract behavioral

model on what behaviors should be produced and

when the behaviors should be produced, without ever

mentioning how the behaviors should be imple-

mented. The VFSM design cycle encourages an incre-

mental, iterative approach to control specification and

modeling. As Figure 1 shows, a designer will define

and then iteratively refine a control specification

through simulation and validation.

After the control model is simulated and vali-

dated, the state machine implementation is gener-

ated from the control specification. The design

paradigm assumes that the implementation paradigm

will provide the necessary environmental interfaces

and mappings to realize the abstract behavioral model,

as Figure 2 illustrates.

The VFSM specification language is specifically

designed to reinforce the abstract behavioral model by

maintaining a separation of control and data. Control

refers to the rules governing behavior and data refers

to the underlying implementation required to realize

the behavioral model. A behavioral model for a given

control domain is defined via the VFSM specification

language. The specification is written in terms of an

abstract name space (inputs, outputs, and states) that

captures the implementation-independent characteris-

tics of the control domain. The input space defines the

set of abstract environmental conditions on which all

control decisions are based. The output space defines

the set of abstract behaviors the machine can exhibit

and the state space defines a set of frames of reference

for evaluating environmental conditions.

Supporting the specification are the input, output,

and state dictionaries. Within the dictionaries, every

input, output, and state name used in the specification

is formally defined. A definition consists of both

abstract and implementation information. The abstract

information is sufficient to define the behavioral

model, and it is also adequate for simulating and vali-

dating the behavioral model. The implementation

information is used by the mapper generation tools to

integrate and bind the abstractions to system-specific

implementation constructs. As Figure 3 illustrates, the

control specification and dictionary sources define an

abstract and implementation view of the behavioral

model. The two views are input for design documenta-

tion, simulation, validation, and code generation.

Several unique features of the VFSM paradigm

contribute to its expressive power and simplicity. The

paradigm defines a virtual input register (VIR), which

is used to store abstract inputs. The VIR provides a

mechanism for implementing a separation between

control and data. A condition represented by an

abstract input is said to exist if that input is found in

the VIR. Once it is present, a virtual input remains in

the VIR until it is explicitly removed. During specifica-

tion evaluation, Boolean expressions of virtual input

names are used to test for the presence of subsets of

inputs currently in the VIR. A VFSM state machine

may generate output on state entry and exit, as well as

in response to abstract conditions present in the VIR.

Figure 4 illustrates three states of a VFSM specifi-

cation for controlling an automated teller machine

(ATM). The ATM VFSM waits for the customer to

insert the appropriate card and then prompts for a per-

sonal identification number (PIN). If the customer

does so within a certain amount of time and number

of tries, a transaction may begin.

The ATM remains in its initial state, SIDLE , until

the next state transition NS: becomes true. If the

abstract condition ICARDPRESENT exists (the virtual

input name ICARDPRESENT is contained in the VIR),

the machine will transition to state SGETPIN. Note

Figure 1. 
The VFSM design cycle.

Define/update
control specification

Simulate/validate
control specification

Generate implementation
from control specification
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that the physical stimulus that denotes the presence of

the ATM card, which may be a message, an interrupt,

or a change in the value of a data structure, need not

be specified at this level; only the abstract condition

represented by the virtual input ICARDPRESENT is rel-

evant to the control behavior. In general, a next state

transition is specified as a Boolean combination of

input names and then a state name. If the input

expression is true given the current VIR contents, a

transition to the given state occurs.

The SGETPIN state specifies that the input names

IPINPRESENT and ICTIMEOUT should be cleared

from the VIR (C: ) on entry into the state. The state

also specifies entry (E: ) and exit (X: ) actions, which

are produced whenever there is a transition into or

out of the state, respectively. The entry action 

(E: OPINPROMPT, OSTARTCTIMER) specifies that

the customer is to be prompted for a PIN and a 

guard timer started for a reply. The exit action 

(X: OSTOPCTIMER) specifies that the guard timer is

stopped when the machine transitions out of the

SGETPIN state. If the IPINPRESENT input condition

becomes true, a transition to state SCHKPINwill occur.

If the ICTIMEOUT input condition becomes true, a

transition to state SBYEBYE will occur (this state is 

not shown in Figure 4). Until one of these conditions

becomes true, the machine remains in the SGETPIN

state.

The SCHKPINstate specifies an entry action to val-

idate the customer PIN (E: OPINVALREQ). Following

entry action production, the machine should proceed

(M: PROCEED) to evaluate the input action section

(IA: ). The input action section specifies that the out-

put OBADPINREPLY should be produced if the input

condition IPINNOTOK is contained in the VIR, in

which case the customer will be notified. In general,

input actions are specified as a Boolean combination of

input names and then a list of outputs. If the input

expression is true given the current VIR contents, the

list of outputs is produced. The VFSM will enter state

SBTRANS (not shown) if the customer entered a cor-

rect PIN, in which case the transaction can commence.

If the PIN is incorrect but the customer has 

not exhausted the number of possible retries 

(IPINRETRYOK), the VFSM returns to state SCHKPIN

and the customer will again be prompted to enter the

PIN. Otherwise, the customer has made the maximum

number of tries, so the VFSM enters the terminal 

state SBYEBYE.

As noted earlier, the name space dictionaries sup-

port the control specification. Figure 5 illustrates seg-

ments of the input, output, and state dictionaries for

the ATM VFSM. One or more attributes compose a

dictionary record, and the attributes are given as key-

word value pairs. The example dictionary records all

begin with $name and $des c attributes. The input

dictionary segment defines the input IPINRETRYOK,

and the segment’s $des c attribute gives a brief

English description of its meaning. The virtual input

class ($class ) attribute denotes that this input

Real-world
events and

data structures

Map into
abstraction

Control
specification

Abstract
control side

Real-world
data side

Real-world
behaviors

Map into
implementation

Abstract
inputs

Abstract
outputs

Figure 2. 
VFSM design paradigm overview.
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belongs to a set of related virtual inputs, one of which

(at most) may be present in the VIR at a time. The vir-

tual event ($event ) attribute defines the external

stimuli that may cause this input to be inserted into

the VIR—in this case, the event EPINVALFAIL . The

$how attribute contains a logical condition, expressed

in C, that indicates when the input is to be inserted

into the VIR when one of the events in its $event

attribute is received. The $vercond attribute is an

abstract version of the $how attribute that is used dur-

ing simulation and validation. The $vercond attribute

is described in more detail in the “VFSM Verification

Tools” subsection.

In addition to $name and $desc attributes, the

output dictionary entry contains the name of a func-

tion to be called to realize the given abstract output

($fcn ) and the code segment to be executed for the

given abstract output name ($how). The output dic-

tionary record also defines a machine event ($me)

attribute which, like the $vercond attribute in the

input dictionary, is an abstract representation of 

the $how attribute that is used during simulation 

and validation.

Related Work
VFSM is one of several tool-supported methodolo-

gies based on extended finite-state machines that

recently have attained substantial industrial use. Other

examples include Statecharts3 and the Specification

and Description Language (SDL)4.

VFSM differs from these methodologies in two

major ways. The first difference is that VFSM is tai-

lored for use by software developers during low-level

design while the other methodologies are used pri-

marily by system architects earlier in the design

process. The advantage of using VFSM so late in the

design process is that the gap from low-level design

to code is small enough to be bridged automatically

by the VFSM translator. Subsequent changes to the

control behavior of the module are made to the

VFSM specification rather than to the implementa-

tion, and the translator assures that the two remain

consistent. By contrast, CASE methodologies used

earlier in design often result in an item of documen-

tation that inevitably becomes out of date with

respect to the implementation.

The second major difference is that Statecharts

and SDL provide design notations that are far more

expressive than VFSM. SDL, for example, offers pow-

erful object-oriented data modeling capabilities. In

contrast, VFSM extends the basic FSM model with lit-

State dictionary

Modeling info
Simulation/validation info
Implementation info

Output dictionary

Modeling info
Simulation/validation info
Implementation info

Input dictionary

Modeling info
Simulation/validation info
Implementation info

Control specification

Entity
behavior rules

+

Formal model definitionSimulator Validator

Mapper
generation

tools

Dictionary
and control
specification
translation

tools

Executable products

Figure 3. 
Dictionaries and specification in VFSM design.
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tle more than Boolean variables. The danger of highly

expressive design notations is that they can be incor-

rectly used as programming languages, resulting in an

overly detailed design that is too close to an imple-

mentation and cannot easily be simulated or validated.

The VFSM notation, by virtue of its simplicity, forces

the developer to produce an abstract specification of

the control behavior of a module, and VFSM has

proven to be sufficiently expressive to capture the vast

majority of applications we have encountered.

VFSM Implementation Paradigm
This component of VFSM allows the abstract

behavioral model defined during design to be inte-

grated without modification into the target system

environment. The implementation paradigm makes

no assumptions regarding the run-time environment

of the host system. Intermachine communication and

timing services are assumed to be provided by the host

environment. As Figure 6 shows, a VFSM implemen-

tation comprises four implementation modules: inter-

face function, input mapper, output mappers, and

specification interpreter. The roles, responsibilities, and

interfaces of each module are specified by the para-

digm. The specification interpreter is provided as part

of the system software. The interface function must be

coded by the application developer, and the input and

output mappers are generated from the input and out-

put dictionary contents, respectively.

The role of the interface function is to shield the

VFSM implementation from the real-world stimuli.

The interface function is responsible for mapping real-

world stimuli into the virtual event space, invoking

the input mapper and interpreter. In the ATM exam-

ple, the interface function would detect the physical

stimulus (message, interrupt, or change in data struc-

ture value) denoting the presence of the customer’s

ATM card, conveying the stimulus via the input map-

per to the VFSM specification. The input mapper role

is that of VIR manager. It is responsible for mapping

virtual events into one or more virtual inputs, which

are stored in the VIR. It is the role of the output map-

ping functions to realize the state machine behaviors.

Output mapping functions are responsible for mapping

virtual outputs into real world behaviors. The specifi-

cation interpreter executes a VFSM specification using

the current state and VIR contents of the VFSM to be

executed and the encoded version of the VFSM speci-

fication produced by the VFSM translator.

The operations below characterize a typical execu-

tion scenario of the functions shown in Figure 6.

SIDLE {
NS: ICARDPRESENT > SGETPIN;

}

SGETPIN {
C: IPINPRESENT, ICTIMEOUT;
E: OPINPROMPT, OSTARTCTIMER;
X: OSTOPCTIMER;
NS: IPINPRESENT > SCHKPIN;

ICTIMEOUT > SBYEBYE;
}

SCHKPIN {
M: PROCEED;
E: OPINVALREQ;
IA: IPINNOTOK ? OBADPINREPLY;
NS: IPINOK > SBTRANS;

IPINRETRYOK > SGETPIN;
TRUE > SBYEBYE;

}

SIDLE

SGETPIN

SCHKPIN

ICARDPRESENT

IPINPRESENT IPINRETRYOK

SBYEBYE

SBTRANS

TRUE

ICTIMEOUT

IPINOK

Figure 4. 
Example VFSM specification and state transition graph.
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• Execution begins when the interface function

receives an external stimulus—for example, a

message, timer expiration, or interrupt.

• The interface function maps the external stim-

ulus into a virtual event within the event space

of the given VFSM and invokes the input map-

per with the virtual event as an argument.

Based on the virtual event and the values of

implementation data structures, the input

mapper may either insert inputs into or delete

them from the VIR.

• The interface function next invokes the specifi-

cation interpreter. Given the current state and

VIR contents, the interpreter evaluates the

VFSM control specification, which may result

in state changes and the production of virtual

outputs.

• When a virtual output is produced, the inter-

preter invokes the C function specified for that

output by the $fcn attribute in the output dic-

tionary. This function performs the necessary

operations to realize the behavior associated

with the virtual output. As Figure 6 shows, an

output function may produce “feedback”

events by invoking the input mapper, which

can result in an instantaneous change of the

VIR while the VFSM is executing.

• Execution of the VFSM continues until a state

is reached from which no next-state transitions

are possible given the VIR contents. At this

point, the specification interpreter returns con-

trol to the interface function. Because the

VFSM will remain in this “quiescent” configu-

ration until its VIR changes, there is no need to

execute the VFSM again until the interface

function receives another external stimulus.

VFSM Toolset
A number of tools have been developed to sup-

port software designers who use the VFSM paradigm.

Code generation tools translate the specifications for a

design into code, which will be compiled into a prod-

uct. Verification tools allow developers to exercise

their VFSM designs in a desktop UNIX* environment.

This procedure saves the costs associated with testing

Input Dictionary Segment

$name IPINRETRYOK
$desc It is valid for the customer to re-enter the PIN
$class retrystat
$event EPINVALFAIL
$how COND ptr2app->num_tries < ptr2app->max_tries
$vercond num_tries < max_tries

Output Dictionary Segment

$name OPINVALREQ
$desc Report customer id validation request
$me num_tries++;

EPINVALSUCC | | EPINVALFAIL;
$fcn atmomisc
$how ptr2app->num_tries++;

if (ptr2app->pin_entered == ptr2app->pin_required)
{

atmimap (EPINVALSUCC, ptr2instance);
}
else
{

atmimap (EPINVALFAIL, ptr2instance);
{

State Dictionary Segment

$name SBTRANS
$desc Begin customer transaction selection

Figure 5. 
Dictionary example.
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fully realized implementations of flawed designs on

actual switching hardware. Documentation generation

tools create the required design documentation from

the specification.

Code Generation Tools
Code generators serve two purposes in the VFSM

environment. First, they ensure that the design

described in the specification and dictionaries is exactly

and precisely implemented by the code. Second, they

free users from performing repetitive coding and test-

ing tasks, allowing them to concentrate on the essen-

tials of the design, which are generally complex. VFSM

has two major code generators: the translator, which

encodes the specification into C, and the mapper gen-

erators, which produce the mapping code functions

based on the dictionaries.

VFSM translator. This program translates infor-

mation from the specifications and dictionaries into C

code, which is then compiled into either the 

simulator/validator or the target product itself. The

relationships between state transitions, output pro-

ductions, and the contents of the VIR as defined by

the specification are encoded for later interpretation

by the VFSM specification interpreter. Pointers to

each output function defined by the $fcn attributes

in the output dictionary are stored in the output

function array (OFA) structure so that they can be

invoked by the VFSM specification interpreter during

the execution of a VFSM.

To execute a VFSM specification, the specification

interpreter will use the encoded data about the specifi-

cation to determine what to do. Because the encoded

data must be interpreted, it is not possible to get the

same efficiencies from VFSM as you can from com-

piled languages. Several optimizations5,6 have been

applied to the encoding to make execution as efficient

as possible, making VFSM acceptable for all but the

most real-time critical applications. The projects that

1. Wait for external stimulus.

2. Map external stimulus to virtual event.
Invoke input mapper to map virtual event into virtual inputs.

3. Invoke specification interpreter to evaluate control specification.
Evaluation of control specification continues until state machine
is unable to change state. Interpreter returns control to
interface function; continue cycle at step 1.

All external
events

Interface
function

Maps real-world
event to virtual event

Virtual event from
interface function

Input
mapper

Maps virtual
event to

virtual inputs
and stores

in VIR

Manipulates
VIR contents

VIR

Uses VIR
to evaluate
specification

Specification
interpreter

Interprets
control

specification

Output
name is

index into

Feedback event from
output mapping function

Output
mapper

Maps virtual
output to
real-world
behavior

OFA – Output function array
VIR – Virtual input register

Control
specification

Encoded
control

specification

OFA

Figure 6. 
General VFSM implementation structure.
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have used VFSM to reengineer existing code have

benefited from many savings because of the simple

execution model and, thus, simpler interactions that

seem to counterbalance the loss of performance.

The VFSM translator reports two kinds of errors

and warnings. Of course, we must report problems

that cause translation to fail and indications that the

design is incomplete. In addition, we report a variety

of semantic errors and warnings. These indicate that

the design seems to contain violations of the VFSM

paradigm. For instance, because only one input from a

class can be in the VIR at a time, a logical AND condi-

tion can never be true if it contains two members of

the same class.

VFSM mapper code generation. In VFSM, we

use dictionaries to store both the abstract and real-

world information associated with virtual names. The

user must always supply the application-specific code

that realizes specific abstract names. However, given

the correct information stored on a per-virtual-name

basis in the dictionaries, we can generate the code that

controls the mapping between the abstract names and

the real-world representations. Generating the control

code in this way saves the user time and effort, and it

avoids the possibility of user error while designing or

coding this control.

The input mapper generation algorithm uses the

input dictionary attributes $name, $class , $event ,

and $how. By definition, the $how attribute contains

one of three reserved keywords for every virtual input.

The keyword DIRECT indicates that the given input

name is mapped unconditionally; only one member of

a virtual input class may be defined as DIRECT for a

given event. An input whose keyword is COND is real-

ized by a logical condition in the data model. This con-

dition is specified via a C expression in the $how

attribute for the input. If the input has the keyword

DEFAULT, it is mapped when none of the conditions

in the $how attribute for other members of its class

with attribute COND is true.

The output mapping functions are defined by the

designer in the $fc n field of the output dictionary.

Thus, many outputs may share the same output

mapper (for example, for grouping-related behav-

iors). The output mapper generation algorithm uses

the output dictionary attributes $name, $fcn , and

$how. The $how attribute defines the code segment

to be executed when the given abstract output action

is to occur.

Figure 7 provides examples of portions of the

generated mappers for the ATM example in Figures 4

and 5. These examples illustrate how the mappers are

assembled from the information in the dictionaries.

Within each input and output mapper, a pointer pro-

vides the user with access to an application-specific

data structure, which contains any data that can influ-

ence control behavior. The top of Figure 7 gives the

output function for the virtual output OPINVALREQ in

Figure 5. The name of the function is derived from the

$fc n attribute of this output, and the function takes

two arguments: a virtual-output identifier and a data

pointer. The body of the output function is a C

switc h statement that contains a case for each virtual

output that has atmomis c as its $fc n attribute. This

case contains the code fragment from the $how

attribute for the output that realizes its behavior.

The bottom of Figure 7 shows an input mapper

segment for the ATM example. Like the output func-

tions, the input mapper takes two arguments: a 

virtual-event identifier and a data pointer. The body of

the input mapper is a switc h statement that contains

a case for each virtual event. This case contains a code

fragment for each virtual input that has the event in its

$even t attribute. In Figure 7, we assume that the

event EPINVALFAI L appears in the $even t attribute

of three virtual inputs: IPINRETRYOK, which is shown

in Figure 5 and has the keyword COND in its $how

attribute, and IPINRETRYNOTOK and IPINNOTOK,

which have keywords of DEFAULT and DIRECT,

respectively. IPINRETRYOK and IPINRETRYNOTOK

are in the same virtual input class while IPINNOTOK is

in a different class. The example input mapper illus-

trates the use of class and keyword information to

generate mapping code. IPINNOTOK is uncondi-

tionally inserted into the VIR, IPINRETRYOK is

inserted only if its logical condition holds, and

IPINRETRYNOTOK is inserted by default if the con-

dition of the only other member of its class, 

IPINRETRYOK, does not hold.
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VFSM Verification Tools
The VFSM toolset includes two tools for pre-

implementation verification of the behavior of a state

machine: the VFSM simulator and the VFSM

validator7. The simulator is highly interactive, relying

on the user to direct how the machines should exe-

cute, while the validator performs exhaustive traversal

of various execution scenarios.

Both the simulator and validator support net-

works of communicating VFSMs, allowing the interac-

tion among VFSMs in the network to be exercised

along with the execution of the individual VFSMs. In a

atmomisc(output, ptr2instance) /* OUTPUT FUNCTION */
ATMOUTPUTS output;
VFSMINSTENV *ptr2instance;
{

/* Switch on output and realize the specified virtual output */
switch  (  output  )  {

. . . . . . .

. . . . . . .

case OPINVALREQ:
{ /* Start OPINVALREQ scope */
ptr2app->num_tries++;
if (ptr2app->pin_entered == ptr2app->pin_required)
{

atmimap (EPINVALSUCC, ptr2instance);
}
else
{

atmimap (EPINVALFAIL, PTR2INSTANCE);
}
}  /* End OPINVALREQ scope */
break;  /* End case OPINVALREQ */

. . . . . . .

. . . . . . .

}  /* End of output function atmomisc */

atmimap (event, ptr2instance) /* INPUT MAPPER */
ATMEVENTS event;
VFSMINSTENV *ptr2instance;
{

/* Switch on event and derive virtual inputs */
switch  (  event  )  {

. . . . . . .

. . . . . . .

case EPINVALFAIL:
 map_array [map_index++] = IPINNOTOK;

 if  ( ptr2app->num_tries < ptr2app->max_tries  )
 {
 map_array [map_index++] = IPINRETRYOK;
 }
 else
 {

map_array [map_index++] = IPINRETRYNOTOK;
}

 break;  /* End of case for event EPINVALFAIL */

. . . . . . .

. . . . . . .

}  /* End of input mapper */

Figure 7. 
Output and input mapper segments.
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VFSM-generated implementation, inter-VFSM com-

munication takes place via system calls to send and

receive messages that appear in the interface function

and output functions. The simulator and validator,

however, do not support the inclusion of C code, so

we have provided a set of communication and timing

primitives, known as the verification environment, that

are based loosely on the Operating System for

Distributed Switching (OSDS) used in the 5ESS

switch. VFSMs communicate in the verification envi-

ronment by sending each other virtual events. Each

VFSM has an event queue on which it receives events

from other VFSMs. When it executes a VFSM, the ver-

ification environment removes the event at the head

of its event queue, performs input mapping for the

event, and then invokes the specification interpreter

for the VFSM.

The communication and timing primitives are

invoked in the $me attribute in the output dictionary

and the $vercond attribute in the input dictionary.

These attributes are known as mapping abstractions

because they allow an abstract specification of those

aspects of the input mapper and output functions

that can have an impact on control behavior.

Examples of mapping abstractions appear in the dic-

tionaries in Figure 5. The code fragment in the $how

attribute in the output dictionary compares the cus-

tomer’s stored PIN to the one that was just entered to

see if the latter is valid. Because the database of cus-

tomer PINs is not included in the VFSM model, the

Executing VFSM atm

First, we map the external event, which is waiting for the ATM machine.
There is only one choice, so the input IPINPRESENT can be directly mapped.

Mapping Event atm.ECUSTOMERPIN

instance atm VIR = {  IPINPRESENT(2)  }

The simulator is executing the ATM machine given the VIR contents above.
The input causes a transition to a new state. Because we are leaving
SGETPIN, we perform the two exit actions, one of which stops the ECTIMEOUT
timer.

<VFSM> INSTANCE atm ENTERED SPECIFICATION EXECUTOR at TIME 3
<VFSM> Machine state: atmÕSGETPIN(1)
Exit: atmÕOSTOPCTIMER(6)  Stopping  Timer atm.ECTIMEOUT

In the new state, the $me for entry action OPINVALREQ is
$me num_tries++;

EPINVALSUCC | | EPINVALFAIL;
The user must choose one of these choices. The ÒsÓ choice below
would skip this choice entirely. The events to be chosen are both
feedback events and will be mapped immediately.

<VFSM> Changing state to atmÕSCHKPIN(2)
Entry: atmÕOPINVALREQ(2) Output->Event Choice for output atm.OPINVALREQ(2)
Choice # What?
1: EPINVALSUCC
2: EPINVALFAIL

Enter Choice: [1-2,s] >>    2
Mapping Feedback Event atm.EPINVALFAIL

instance atm VIR = {  IPINPRESENT(2), IPINNOTOK(4)  }

instance atm VIR = {  IPINPRESENT(2), IPINNOTOK(4), IPINRETRYOK(5)  }

Proceeding to evaluate input actions
Output: atmÕOBADPINREPLY(4)
Sending Event cust.EBADPINRPT

We transition to a new state, send the EPINPROMPT request to the cust
machine, which completes the processing on the ATM machine.
<VFSM> Changing state to  atmÕSGETPIN(1)

<VFSM> Removing inputs: IPINPRESENT(2)    ICTIMEOUT(7)
Entry: atmÕOPINPROMPT(1)
Sending Event cust.EPINPROMPT
atmÕOSTARTCTIMER(5)

Figure 8. 
Example simulation session.
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$me attribute that models this code fragment simply

lists the possible outcomes of the PIN validation.

Such a list of possibilities separated by a logical OR

symbol (||) is referred to as a choice point. Note that the

$me construct can also reference simple scalar vari-

ables (num_trie s in this example), and it could also

include timer start and stop operations and the send-

ing of virtual events to other VFSMs.

VFSMs often communicate with other entities in

their environment. We have found that use of the

simulator and validator is far more effective if VFSMs

are constructed that model the behavior of these

external communication partners. In the ATM exam-

ple, it is useful to define such an environment VFSM,

known as “cust,” that represents the behavior of the

customer using the ATM. This VFSM begins the inter-

action by sending the ECARDPRESENT event to the

ATM machine, and it can then optionally generate an

event representing the PIN when prompted by the

ATM VFSM.

VFSM simulator. This highly interactive tool

allows the designer to execute a design model and

closely observe the results. The simulator allows effec-

tive prototyping of specifications in various stages of

development, from a completed specification to one

that has not been well fleshed out. The specification of

behaviors in the dictionaries is reflected in the verifica-

tion environment. Thus, little additional effort is

required to simulate a VFSM or network of VFSMs.

When the simulation session is at a quiescent

point, the user can select an enabled VFSM (that is,

one in which the event queue is not empty) to exe-

cute next. The user can also choose to cause the expi-

ration of a running timer. When a choice point is

encountered during execution of a VFSM, the simu-

lator suspends its execution and prompts the user to

make a choice using a simple menu. Once the choice

is made, the simulator resumes execution of the

VFSM, which continues until another choice point is

encountered or the VFSM execution completes.

Completion occurs when a VFSM state is reached

from which no next-state transitions are possible. As

the VFSM is executing, the simulator displays the

VFSM states entered, changes in VIR contents, virtual

outputs produced, timer operations performed, and

virtual events that are fed back or sent to other

VFSMs. Examination of this output allows the devel-

oper to determine that the VFSM design has the

intended behavior.

Figure 8 presents a sample simulation session for

the ATM example. We have added the environment

machine to simulate the actions of the customer at the

ATM machine. The event ECUSTOMERPIN has been

sent from the customer VFSM. In the figure, simulator

output is shown as text like thi s while comments

on the text are shown like this .

During execution, the simulator produces message

sequence charts, optionally showing which states have

been hit, which outputs have been produced, which

inputs have been mapped, and which variables have

been set. They also show the communications via pairs

of instances. A local tool, seqflow, is used to display

the results. In this way, a VFSM design can be used to

document its own behavior accurately. In a non-

VFSM design, such sequence charts are merely asser-

tions about what the design should do.

Message sequence charts are a powerful tool for

illustrating scenarios for a design. The seqflow tool was

in common use in 5ESS switch development for many

years before VFSM began generating seqflow input. By

using this tool, we produced output our users were

ATM

SIDLE(0)

SGETPIN(1)
OPINPROMPT(1)

0STARTCTIMER(5)

OSTOPCTIMER(6)
SCHKPIN(2)

OPINVALREQ(2)
SBTRANS(3)

OTRANSPROMPT(3)

Customer

SIDLE(0)
0CARD(1)

SGETREQ(1)

SPIN(2)
0SENDPIN(2)

SGETREQ(1)

ECARDINSERT

EPINPROMPT

ECUSTOMERPIN

ETRANSPROMPT

ATM – Automated teller machine

Figure 9. 
Seqflow message sequence chart output for the ATM
example.
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familiar with and had experience generating them-

selves, and the message sequence charts we produce

automatically during simulation can become part of

the required design documents. Figure 9 shows the

output of seqflow for a simulation session of the ATM

VFSM. The two columns show the customer environ-

ment VFSM and the ATM VFSM. Arrows between

columns denote the sending of virtual events between

the VFSMs. The labels in bold type in each column

denote the VFSM states entered while the labels in

italicized type represent the virtual outputs produced.

VFSM validator. This tool exhaustively exercises

possible execution scenarios of a network of commu-

nicating VFSMs. It checks for errors in the concurrent

interaction of the VFSMs, such as deadlock, in which

some VFSM is waiting to receive a virtual event but all

the event queues in the network are empty.

Whenever such an error is found, the validator out-

puts a message sequence chart, such as that shown in

Figure 9, illustrating the sequence of events that led to

the error.

In the VFSM simulator, the user interactively

selects which VFSM instance will execute next. In

addition, the user can provide a selection whenever a

choice point is encountered during the execution of a

VFSM. The VFSM validator is different in that it oper-

ates in batch mode and with no user intervention.

Whenever there is a choice of which VFSM to execute

next or which choice selection is to be made, the val-

idator systematically tries all possibilities. Therefore,

one can visualize the execution of the validator as a

tree that branches whenever either kind of choice

must be made. A given simulation session explores

only one path through this tree, while the validator

attempts to explore all possible paths.

The VFSM validator searches for errors in a net-

work of communicating VFSMs by constructing the

global state graph of the network. The global state is a

vector containing the state of each VFSM in the sys-

tem that includes all information relevant to its com-

munication behavior. The state of a VFSM includes the

VFSM state, VIR, and event queue. Beginning from

the initial global state, the validator generates possible

successors of each global state by executing each

VFSM in the network. Because the number of possible

global states is finite, the generation of global states in

this way eventually terminates. The global state com-

pletely determines the scenarios that can occur in the

future, so it is not necessary to explore successors of a

global state that was generated at an earlier point in

the validation.

In most implementations of validation algorithms,

a hash table is used to track which global states have

already been generated. However, because the num-

ber of global states is an exponential function of the

global state size, the hash table will overflow available

memory when a large application problem is vali-

dated. The VFSM validator employs the supertrace algo-

rithm,8 which avoids explicit storage of global states in

memory. Therefore, it can handle larger problems (the

drawback of the algorithm is that it may not explore

all global states so that some errors can be missed).

We developed a prototype version of the validator

in 1993. To convince ourselves that the validator had

enough features to be useful in real 5ESS switch appli-

cations, we validated three VFSM applications that had

already completed testing in the lab. To our surprise,

the validator found bugs in all three applications that

escaped detection during simulation and testing. This

clearly illustrates the power of formal validation as a

technique for finding errors. The VFSM validator has

since been used by more than 25 software developers,

representing one of the first instances in which formal

validation has been used on a wide scale in an indus-

trial software development organization. We have

found that the simplicity of the VFSM notation allows

an extremely compact representation of control

behavior that keeps the number of global states

explored by the validator to an acceptable level for

most applications.

Documentation Generation Tools
The VFSM toolset includes tools that can create a

design documentation package for a given VFSM spec-

ification and dictionaries. The package includes a state

transition diagram, a descriptive form of the behavioral

model, and formatted dictionaries. When combining

the above output with the per-scenario output from

simulation runs, the only documentation left for the

user to write is a few paragraphs describing external

interfaces, partitioning, and general strategy. In this
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way, the VFSM toolset generates the majority of the

required design documentation. The user is thereby

relieved of much writing of documentation by hand

and is assured that the documentation is consistent

with the implementation because both are derived

from the same VFSM specification and dictionary

source files.

The descriptive form of the behavioral model con-

sists of one or more pages for each VFSM state fol-

lowed by tables of cross-reference information on

virtual names. Figure 10 shows the descriptive form

for the state SGETPIN in the ATM example. Notice

that in addition to the information that can be

obtained just by looking at the raw state specification,

the descriptive form includes:

• The name of the state(s) from which the cur-

rent state can be entered (derived from the

specification),

• The one-line description of each virtual name

(from the $des c fields in the dictionaries),

• The events that may be generated for the given

virtual outputs (from the $me fields in the out-

put dictionary),

• The events that lead to the given inputs being

mapped (from the $even t fields in the input

dictionary), and

• The classes of the given inputs (from the

$clas s fields in the input dictionary).

Experience with VFSM in Lucent Technologies
The first of the following two subsections briefly

reviews the history of the development and intro-

duction of VFSM and discusses the issues surround-

ing VFSM technology transfer.9 The second

subsection discusses several areas of application of

VFSM technology.

Technology Transfer
After developing a successful prototype of the

VFSM toolset, we shared VFSM project results and

vision with the user community. Our anticipation of a

warm welcome for the new technology contrasted

sharply with the chilly reception given our proposal by

potential users who raised a number of objections to

VFSM. Much of the present 5ESS switch development

effort involves maintenance, reengineering, and inter-

facing with existing code. Therefore, many individuals

thought introducing a new methodology like VFSM

would be feasible only on projects involving develop-

ment of completely new software. Some developers

would not consider adopting VFSM without quantita-

STATE EXECUTION MODE:

On entry to this state, DO NOT evaluate the Input Action Section.

ENTRY CLEAR:

(IPINPRESENT) Customer has entered PIN {class: custact} {event(s): ECUSTOMERPIN}
and (ICTIMEOUT) Timeout occurred while waiting for cust reply {class: custtimer} {event(s): ECTIMEOUT}

ENTRY OUTPUT:

(OPINPROMPT) Prompt for customer PIN {event(s): cust.EPINPROMPT}
and (OSTARTCTIMER) Start the cust reply watchdog timer {event(s): TSTART(ECTIMEOUT)}

EXIT OUTPUT:

(OSTOPCTIMER) Stop the cust reply watchdog timer {event(s): TSTOP(ECTIMEOUT)}

NEXT STATE TRANSITION SECTION:

if (IPINPRESENT) Customer has entered PIN {class: custact} {event(s): ECUSTOMERPIN}
then go to (SCHKPIN) Check the customer PIN

if (ICTIMEOUT) Timeout occurred while waiting for cust reply {class: custtimer} {event(s): ECTIMEOUT}
then go to (SBYEBYE) End of transaction

STATE: SGETPIN

DESCRIPTION: Get the customer pin

PREDECESSORS: SIDLE, SCHKPIN

Figure 10. 
Generated descriptive behavioral model segment.
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tive evidence that its use would yield the claimed

reductions in development intervals and defect rates.

The technology transfer ice breaker finally

appeared in the form of a project whose schedule was

considered unattainable given the available software

development environment. Working with the lead

engineer on a few preliminary estimates demonstrated

that VFSM technology could provide the productivity

required to meet production schedules. VFSM became

part of the critical path of the user community’s suc-

cess. Our hope was that this success would validate

VFSM technology.

The project was delivered on time, and its success

was attributed to the use of several enabling technolo-

gies, including VFSM. This pilot project won over a

small group of enthusiastic VFSM converts. However,

it became clear that seamless integration of VFSM into

the embedded software engineering infrastructure was

required before it would be ready for a larger user

community within the 5ESS switch development

organization. To be suitable for use in development

projects, VFSM had to become an accepted part of the

official design process, which required precise docu-

mentation of the steps required in its application. It

was necessary to allow VFSM specifications to be put

under configuration control and for the VFSM transla-

tor to be integrated into the load-building process that

compiles and links all 5ESS switch source code. An

extensive four-day training course was developed that

covered behavioral modeling concepts, a hands-on

introduction to the VFSM simulation and validation

environments, and the integration of a VFSM-based

design into a C-based implementation.

These efforts, along with organizational support

for the necessary process changes, led to extensive use

of the VFSM methodology and toolset in the 5ESS

switch environment. User experience with VFSM has

now become the guiding influence as we endeavor to

provide ever increasing technology leverage over the

design, coding, and testing tasks. VFSM technology

transfer continues today, some five years after the first

VFSM application. Our overarching goal is to make

application of the VFSM methodology and toolset as

smooth and painless as possible. As part of the tech-

nology transfer process, one of the authors of this

paper participates as a consultant, reviewer, and

inspector for each and every VFSM-based design. Our

measuring sticks for gauging technology transfer

progress are repeat users and referrals. Furthermore,

several experienced VFSM designers have transferred

to other development organizations and persuaded

their new colleagues to use VFSM.

We now have enough experience with VFSM

that it is becoming possible to obtain quantitative evi-

dence regarding its effectiveness. Data were gathered

on the number of faults detected during testing in the

first 16 VFSM-designed 5ESS switch modules. These

data were compared against the number of faults

predicted for these modules using a model based on

data from previous (non-VFSM) modules. The num-

ber of defects in the VFSM modules was found to be

as much as 50% less than predicted. An informal poll

of VFSM users suggests that the implementation of

VFSM leads to interval reductions of an estimated

15%. We are now collecting more precise data to

confirm this estimate.

To date, 630 people have been trained in VFSM,

and the distribution of VFSM use by area was deter-

mined to be:

• 46% hardware maintenance/fault recovery,

• 41% signaling/customer features,

• 7% peripheral hardware control, and

• 6% trunk and line maintenance.

Example Application Areas
The applications that follow are some of those in

which VFSM has been used. The descriptions were

provided by the engineers who worked on the designs.

• Path control. When new types of ports were

introduced in the 5ESS switch (that is, hard-

ware with associated functionality), approxi-

mately 3,000 lines of code had to be written

to facilitate setting up and tearing down the

connections (paths) between them. We

reengineered this domain so that high-level

control was specified using a small VFSM.

Now, when new ports are introduced, it

takes fewer than 100 noncommentary source

lines (NCSL) to facilitate path control. This

reengineering was completed in less time

than it would have taken to write the 3,000
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NCSL that would have been required by the

existing architecture.

• Intelligent networks. The European Tele-

communication Standard of the Core

Intelligent Network Application Protocol

(INAP) was developed on the 5ESS switch

using VFSM, which was extremely effective.

Extensive simulation was done during the

design phase of this project resulting in a very

high-quality final product. In fact, according to

project quality data, the projected faults per

thousand NCSL for this development is signifi-

cantly lower than the projected mean.

Furthermore, updates and additions to the

protocol have been done easily. This project—

more than 10,000 lines of code in length—

resulted in a very large state machine (the state

machine contains nearly 200 states). Even

though this was a large project, the VFSM

designers believe the implementation is struc-

tured in a way that makes it easy to under-

stand because it was designed and carried out

using VFSM.

• Packet switching channel control. The 5ESS

switch includes a local area network called the

packet switching unit (PSU). Protocol handlers

are plugged into the PSU to provide various

features like ISDN and common channel sig-

naling. For wide band paths, it was necessary

to interconnect several PSUs with the result-

ing channel being controlled by a network of

16 VFSMs, which handle such complicated

interactions as those involving alarms, craft

requests, and protection switching.

Comparable developments have taken much

longer and had many more bugs. The consen-

sus among members of the project team is

that using VFSMs to partition the functional-

ity, as well as using the simulator and valida-

tor to test before reaching the lab or writing C

code, contributed significantly to the project’s

success. In addition, handing out the design of

the VFSMs, virtual input mapping, and virtual

output realization to individual developers

contributed greatly to the smooth operation

and integration of the entire team.

These experiences reinforce our belief that the

use of VFSM leads to designs that have fewer faults,

that are completed more rapidly, and that are easier

to maintain.

Conclusion
We presented the VFSM design and implementa-

tion paradigm, the toolset we constructed to support

its use, and our experience in transferring VFSM tech-

nology to several Lucent software development orga-

nizations. VFSM effectively raises the level of

abstraction available to the programmer by allowing a

high-level specification of the control behavior of a

software module from which the implementation and

documentation can be generated automatically. The

executable nature of the specification makes possible a

thorough analysis with the VFSM simulator and val-

idator. This analysis allows developers to detect and

correct errors while working at their desks, which is

far more effective than debugging code on the actual

switch hardware where it is difficult to re-create error

scenarios and where availability of the hardware test-

bed is limited. The automation provided by the VFSM

toolset is perhaps the most important factor in the

widespread acceptance and popularity of VFSM in the

development communities in which it has been intro-

duced. Our efforts to adapt VFSM technology to the

constraints of the existing development environment

were also crucial.

In the future, the use of multiple cooperating

VFSMs within a process (a VFSM community) will

become more common as VFSM technology is applied

to larger design and implementation problems. A

VFSM community architecture is being defined to

address the needs of larger applications. The architec-

ture defines a run-time environment with dynamic

state machine creation and destruction, machine dis-

patching, intermachine communication, and timing.

The architecture and implementation pattern are

application and operating system independent.

Moreover, the new dictionary language constructs are

being introduced to increase the amount of implemen-

tation that can be generated from the abstract formal

design model.
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