
StateWORKS Studio

Development Tools

User’s Guide & Training Manual

Version 7.0

©2007 SW Software

2

3

4

Contents
Introduction..9

System specification..9
Project Manager..9
State Machine Editor...10
System Configuration..10
System test..10
StateWORKS Lab..10
StateWORKS Monitors..10

SWMon...11
SWQuickPro...11
StateWORKS Terminal...11

Help Files and Other Documents..11
Getting started..13

What is the StateWORKS Studio for?...13
Opening VFSM document...13

Example OnOff...15
Defining States..15
Defining the Virtual Environment...17
Defining I/O Objects...18
Defining Input Names..19

Initializing the virtual input...21
DI (Digital Input) Input Names...21
TI (Timer) Input Names..21

Defining Output Names...21
DO (Digital Output) Output Names..22
TI (Timer) Output Names...22
AL (Alarm) Output Names...23

Filling the state transition table..23
Conditions as logical expressions...26
Complement value..26
Actions as outputs...27

„Always“ Table..27
Saving VFSM...28
Building a VFSM..28

Example OnOff...29
System Configuration..29
Opening the Project Manager..30
Defining the system of state machines...31
Configuring the system..31
Specifying the object properties..32

VFSM (OnOff) Properties...32
CMD (Command) Properties..32
DI (Digital Input) Properties...33
DO (Digital Output) Properties...33
TI (Timer) Properties..33
AL (Alarm) Properties..34

5

Introducing I/O Units..34
Creating the system configuration...35
Testing the system...35
Starting the StateWORKS Lab (SWLab)..36
Monitoring RTDB...36

Monitoring RTDB objects...40
Monitoring AL Object...42
Monitoring VFSM Object...42
Monitoring CMD Object...43
Monitoring TI Object..44
Monitoring CNT Object..44
Monitoring ECNT Object...44
Monitoring DI Object..45
Monitoring DO Object..45
Monitoring SWIP Object..46
Monitoring STR Object...46
Monitoring PAR Object..46
Monitoring DAT Object..47
Monitoring UDC Object...47
Monitoring NI Object..48
Monitoring NO Object..48
Monitoring XDA Object...49
Monitoring TAB Object..49
Monitoring OFUN Object...49

Tracing...49
Monitoring RTDB using SWTerm..50
Monitoring RTDB using SWQuickPro..50

Specifying VFSM..53
What will you learn now?...53
Example: Flow...53
Defining States..54
Defining I/O Objects...55
Defining Input Names..55
Defining Output Names...56

Setting an analog output..56
Filling state transition table..56
Configuring the system..56
Specifying object properties..57

NO (Numerical Output) Properties...57
NI (Numerical Input) Properties..57
SWIP (Switch-point) Properties..57
CNT (Counter) Properties...58

Specifying I/O Units...58
Managing a System of VFSMs..59

What is a system of VFSMs?..59
Example Gas...59
Opening the project...60
Specifying the Master VFSM...61
Defining States..61
Defining I/O Objects...62
Defining Input Names..62

6

Specifying state conditions..62
Defining Output Names...63
Configuring the system..63
Displaying the system..63
Specifying object properties..65

Specifying Units...67
Printing and Publishing...69
Linking to other Applications...71

StateWORKS run-time systems..71
TCP/IP Link..71

Other topics..73
Using tables...73

Generation of analog output values...73
Example: SetAo...74

Output functions...75
Example: Stepper...75

Implementing combinational systems...78
Example Combi...78

Multi-valued objects...79
Input values...79
Output objects...80
In-Out objects..80

Using VFSM-Templates..81
What is a Template?..81
Example: Template..81
Specifying a Template...82
Generating a Template from a VFSM...83
Changing a VFSM Template...83
Connecting VFSM to Template..83
Application Notes..84

VFSMs documentation..87
OnOff example...88

References..93

7

Figures and Tables
Figure 1 Choosing a file..13
Figure 2 Creating a new VFSM...14
Figure 3 The inital state transition (ST) diagram..14
Figure 4 State Name Dictionary..16
Figure 5 A state transition (ST) table opens when the state is created.......................17
Figure 6 I/O Object Dictionary..19
Figure 7 Input Name Dictionary..20
Figure 8 Output Name Dictionary...22
Figure 9 The VFSM execution model...23
Figure 10 Input Name list..24
Figure 11 Output Name list...24
Figure 12 State Name list..25
Figure 13 OnOff: The ST table of the state OnBusy...25
Figure 14 OnOff: the ST diagram..27
Figure 15 The elements of the virtual specification..28
Figure 16 The Project window..29
Figure 17 The Project and VFSM Properties windows..30
Figure 18 CMD properties window...31
Figure 19 DI properties window...32
Figure 20 TI properties window..32
Figure 21 StateWORKS Lab..35
Figure 22: Connecting to SWLab...36
Figure 23 Selecting the list of state machines...36
Figure 24 Selecting the list of I/O-Units...37
Figure 25 Selecting the user defined object list...37
Figure 26 Displaying VFSM virtual input and state..38
Figure 27 Displaying UNIT name..38
Figure 28 Displaying the name of user defined object list..38
Figure 29 Selecting the list of state machine commands...38
Figure 30 Displaying the command name and values...39
Figure 31 The StateWORKS SWMon monitor...40
Figure 32 The object service mode..40
Figure 33: The StateWORKS SWQuick monitor...50
Figure 34 Gas Flow regulator...51
Figure 35 Flow: the ST diagram...52
Figure 36 Switchpoint definition..56
Figure 37 A gas flow regulator with a pressure gauge..58
Figure 38 A Gas control system...58
Figure 39 Gas: the ST diagram...59
Figure 40 Gas: the SMS diagram...62
Figure 41 A UNIT DI8 specification table...65
Figure 42 Determination of the numerical output value..72
Figure 43 Stepper control...74
Figure 44 Stpper output voltage (Ao)...74
Figure 45 Stepper output voltage with delayed second step.......................................75
Figure 46 Stepper: the ST diagram..76
Figure 47 Timer object...79

8

Figure 48 Gas with 3 Flow Slaves: the SMS diagram..81
Figure 49 Flow: the template window..81
Figure 50 Flow: the template generated from existing Flow state machine...............82
Figure 51 My command window used to connect VFSM to Template.........................83

9

10

INTRODUCTION

The StateWORKS Studio [6] is a set of programs used to develop software for
complex systems, such as control systems. That part of the software which controls the
behaviour of the software is isolated from the numerical computation, and is treated as a set
of state machines. In some cases, you could specify and test a control system without
writing a single line of code.

This document is completed by tutorials [11][12][13] which teach you the details of
using menu commands while working with StateWORKS Studio.

System specification

You specify the system using the StateWORKS Studio (SWStudio) which is a I.D.E.
with two powerful editors: a State Machine Editor and a Project Manager. In addition, it
contains SwLab and monitors (SWMon, SWQuickPro, SWQuick, SWTerm) to test the
specified system. Note that no version contains all monitors. In the time of last updating the
manual SWMon and SWQuickPro become standard monitors delivered in the installation
package.

Project Manager

You organize your project with the Project Manager. The project contains files that
describe state machines used by your system, IO-units, VFSM-templates and system
configuration. All files are managed by the Project Manager that keeps track of all changes
and assures the system consistency.

11

State Machine Editor

A control system is built of several state machines and I/O-units. The State Machine
Editor is a graphical and text editor to specify the state machine behaviour. In addition, the
State Machine Editor is used to specify VFSM-templates and I/O-units. The results of the
specification can be built producing data files that are used by StateWORKS run-time system
to perform the control task. The specification can be printed or exported to a text editor for
documentation purposes. The specification is also available as XML files to be displayed in
web browsers.

System Configuration

A system of state machines specified by the State Machine Studio must be adapted to
the real control environment, i.e. all objects used by state machines must be determined, for
instance:

• state machine inputs are linked with appropriate input signals,
• timer values are determined,
• switch-points for numerical (e.g. analog) inputs are determined, etc.
• The system is configured in the Project Manager.

System test

You test the system using the StateWORKS Lab and the StateWORKS monitors.

StateWORKS Lab

The StateWORKS Lab (SWLab) is a Window program that runs under Windows
NT/2000/XP. SWLab is based on a real time data base (RTDB) with a state machine
executor. The RTDB contains all object used in the control system. The SWLab simulates a
small digital and analog input/output system.

SWLab is used to learn the VFSM concept. It can be used to test state machines and
not too complex systems of state machines. It contains a fully functional VFSM execution
environment: its limits result from the number and type of inputs and outputs. In a TCP/IP
link the StateWORKS Lab is a Server.

StateWORKS Monitors

The StateWORKS Studio has different monitors to display and change RTDB objects,
expecially: SWMon, SWQuickPro. In older versions you find also SWQuick and SWTerm.

12

SWMon

The StateWORKS Monitor (SWMon) is a debugging tool that cooperates with a
VFSM execution environment based on TCP/IP link. Hence, it cooperates well with the
StateWORKS Lab and is used to learn the VFSM concept. It gives you the true
understanding of objects used in the control system. It can be used to test a system of state
machines of any size.

SWQuickPro

The StateWORKS QuickPro (SWQuickPro) is a monitor which allows an access to a
single object at a time. SWQuickPro creates automatically a log file that can be used as a
command file. It has a quite elaborated test features that are described in [9]. Its simpler
variant SWQuick does not have the testing facilities.

StateWORKS Terminal

The StateWORKS Terminal (SWTerm) is a debugging tool that cooperates with a
VFSM execution environment using the TCO/IP link. It is a command line program. It
allows the user to log all his activity (commands and system answers) and to use the log file
as a command file. Hence, it is used to automate the tests.

Help Files and Other Documents.

While reading this manual, or when working with StateWORKS Studio, please
remember to use the StateWORKS Studio Help files, which provide a great deal of extra
information and advice on various topics. Many other informative documents may be seen at
the StateWORKS web site, and some are listed in the references.

13

14

GETTING STARTED

What is the StateWORKS Studio for?

The StateWORKS Studio is used to specify virtual finite state machines (VFSM). The
VFSM [1][2] is a state machine that describes a pure behaviour of the control system. You
achieve this by using names that describe states, input conditions and Actions. All names
have a virtual character that is they are just names. You link these names to real signals by
creating I/O objects that are later used to build a system configuration by the StateWORKS
Project Manager.

Opening VFSM document

Figure 1 Choosing a file

15

If you want to specify a single VFSM you start the creation of a new VFSM
Specification by

File / New
In the dialog window New you choose the VFSM file and click on the OK. The dialog

window Base template for this VFSM opens.

Figure 2 Creating a new VFSM

You choose Generic and click on the OK.
You are presented with a state transition diagram (ST diagram) of a VFSM with a

default state Init. While saving or building you can change the VFSM name. You will be
able to specify a VFSM state transition table using active menus and buttons. Before you
start to elaborate your VFSM specification you will have to define several names that are
used for the specification.

In addition, the initial state transition diagram displays an Always table. We will
discuss it later.

Both elements: the Init state and the Always table cannot be deleted; each state
machine contains them. You may rename the state Init.

Figure 3 The inital state transition (ST) diagram

16

Example OnOff

The descriptions are supported by examples. The first example is a state machine
OnOff:

It is a simple state machine that can be a basis of many complex state machines. It
includes these basic I/O objects: Input Command (CMD-IN), Timer (TI), Alarm (AL),
Digital Input (DI) and Digital Output (DO).

The behaviour of the state machine can be described in the following way: The state
machine has two stable “done” states: Off and On. Normally, nothing is observed in a done
state. The state machine enters a done state if the inputs signal that the controlled device has
reached the required state. On entering the done state no Actions are carried out. Hence, the
state machine does not wait for a reaction of the controlled device to a defined stimulus. In
other words, a done state means that everything is OK.

In most cases, each done state is coupled with a busy state. In the example, the state
machine has two busy states: OffBusy and OnBusy. On entering a busy state the state
machine performs some Actions and expects that the controlled device reacts to them issuing
some acknowledgements.

Usually, a busy state is guarded by a timer. If the acknowledgement does not come
during a certain time the state machine must react to this situation. The simplest reaction is to
generate an alarm.

The above principles are represented in the example. The state machine starts in a state
Off. Receiving the command CmdOn it changes to a state OnBusy. Entering the state OnBusy
the state machine switches on the device and starts a timer. If the device acknowledges its
ON state by setting the input Di high the state machine goes to a state On. If the timer
expires before the acknowledgment comes the state machine generates an alarm. On leaving
the state OnBusy the state machine stops the timer as a timeout does not make sense in any
state but OnBusy.

The state machine stays in the state On. Receiving the command CmdOff it changes to
a state OffBusy. Entering the state OffBusy it switches off the device. If the device
acknowledges its OFF state by setting the input Di LOW the state machine goes to the state
Off. The state OffBusy is not guarded by the timer. Thus, if the Di does not change to LOW
the state machine stays in this state and does not signal it, in this example.

Two additional transitions are possible: from OnBusy to OffBusy with the command
CmdOff and from OffBusy to OnBusy with the command CmdOn.

Defining States

You are free to invent state names. Try to use names that “describe” the meaning of the
states. „MotorOn“ name carries more information than „State_1“.

The description of the required control incorporates suggestion for state names. We
accept them as the verbal description usually contains quite convincing and meaningful
names.

As we mentioned already any state machine contains a state Init. The state Init is
created automatically and cannot be removed from the State Name list but you can change
the name of it. It is a convention that each state machine is in a state Init if the system is
switched on. This convention allows you to specify the first transition, immediately, to a
state that you consider as the real beginning state. As Entry Actions of the beginning state
you can specify some Actions that you consider necessary for a safe start of the system.

17

The easiest way to define a new state is to double click on the ST diagram. It opens a
state Name Dictionary by which you can add a state name to the list.

Figure 4 State Name Dictionary

You can manipulate the list adding, and removing states or changing the state
sequence. The state symbol (a circle) on the ST diagram contains the state name and the state
sequence number in the list. The list may be expanded and modified at any time. So, do not
worry if you are not sure in the beginning what states you need. You may add several states
in the state transition dictionary but when you close the dictionary only the currently selected
state is created on the diagram.

Alternatively, you may open the ST diagram using menu command
Dictionary/State

and add state(s) to the list. Several new states can be “transferred” to the ST diagram one by
one by double-clicking on the ST diagram, selecting the state in the list and closing the
dictionary by OK.

You can change the sequence of states in the list at any time. The sequence has no
influence on the VFSM specification or its behaviour. It is just used to express your
preferences in the documentation.

When a state is created on the ST diagram a state transition table (ST table) for this
state always opens (see Figure 5).

You can fill in the state transition table immediately, or at any time you find it
appropriate. Usually, in the beginning you will ignore (just close) the state transition table as
you have to define the virtual environment which you need for transition and Action
specifications.

18

Figure 5 A state transition (ST) table opens when the state is created

Defining the Virtual Environment

The Virtual Environment [5] is an input/output space created by names invented by a
designer to describing the behaviour of a system. The designer is free to choose the names
that, from his point of view, are needed for the system specification.

Objects (variables) used in control systems store various values. An object that
represents a digital input stores a Boolean value (true, false). An object that represents an
analog input stores a number (for instance: float). A parameter stores a value that could be of
any numerical type (integer, float, string, etc.). A timer is a counter, storing a number which
changes when it runs.

In addition, objects have Control Values. A Control Value is a feature of an object that
can be used for control purposes. The Control Value of a digital input corresponds to its
value. The Control Value of an analog input is a set of value ranges (for instance: LOW, OK,
HIGH). The Control Value of a parameter is the status (for instance: INIT, DEF,
CHANGED). The Control Value of a timer is its state (for instance: RUN, STOP, OVER). In
general Control Values must be defined separately for each object type.

The (virtual) input and output names are the only names that can be used to specify the
control system. The Input Names are produced on Control Values of real input control
signals. The Output Names are converted into values of real output control signals. The
real/virtual conversion on inputs and virtual/real conversion on outputs are mostly done
automatically by the real time data base (RTDB) in the VFSM Execution environment. In
some cases, if required, the conversion process may be a program (e.g. a C function).

Before you start to define the Input and Output Names you have to decide what I/O
objects will be used by the state machine.

19

Defining I/O Objects

The I/O Object Types identify sources (inputs) and targets (outputs) of control signals.
The sources and targets of control signals are the real input and outputs in contrary to
(virtual) Input and Output Names that are used to specify the behaviour of the finite state
machine. The I/O Object Types can be grouped into following categories:

• other finite state machines: VFSM
• command: CMD (CMD-IN, CMD-OUT)
• alarms: AL
• internal counting devices:
• timer TI
• counter CNT
• event counter ECNT
• up-down counter UDC

• external digital signals: DI, DO
• external numerical (analog) signals: NI, NO,
• output demultiplexer TAB
• supervision:
• switch-point: SWIP
• string: STR

• data: DAT, XDA
• parameter: PAR
• use defined output function: OFUN
• programmer’s I/O handler or output function interface UNIT

The I/O Objects are used to define virtual Input and Output Names. The virtual Input
and Output Names plus State Names are the only names that can be used in the specification
table. Some I/O Objects are pure inputs (e.g. digital input DI), some I/O Objects are pure
outputs (e.g. digital output DO) and some I/O Objects are both, inputs and outputs (e.g. timer
TI). CMD Objects are either input or output; therefore they appear as CMD-IN and CMD-
OUT in the I/O Object list.

Open the I/O Object Dictionary(see Figure 6):
Dictionary / I/O Object ...

With the Type menu you choose the object type and give a name to the object in the
column Id name. The column Description is not used for the objects considered in this
example.

The MyCmd object is created automatically - this is an object that comprises
commands that the state machine will “understand”. Per default, each state machine has the
MyCmd object. Even if you do not use it effectively the MyCmd object cannot be removed.

You have to choose and name four other objects: Di, Do, Timer and Alarm. You are
free to invent names but we suggest you to use simple names that just describe the object
type. The object names will be used by creating virtual names used by a VFSM specification.
They will be used also by the project to create physical object names to configure the system.
Naming is an important part of the documentation - the VFSM method supports it and gives
you a chance to do both: specify the control and document it properly. We suggest you use
simple names as in the following table (in the example we use: MyCmd, Timer, Alarm, Di,
Do).

20

Figure 6 I/O Object Dictionary

The buttons Create names and Delete unused can be used to create single objects for
all object types. The button Create names composes names using object type and a sequence
number beginning from 0: each click on the button creates a new set of objects. This feature
is not very useful in designing a state machine (who needs all objects?) but are just provided
for test purposes.
Note: The I/O objects you have now specified are real objects but are not yet configured. You can use them to
make the VFSM specification. You will make them truly real, i.e. decide which Di or Timer is used, with the
StateWORKS Project Manager when preparing a system configuration. While configuring them you will also
specify their properties, for instance you will determine the timeout value for the Timer.

Defining Input Names

 (Virtual) Input Names are names invented by the designer to specify the conditions for
state transitions and Input Actions of a VFSM. Only Input Names may be used for these
purposes in a VFSM Specification. A list of all Input Names is called a Virtual Input.

You are free in inventing Input Names. Anyway, also in this case, we will give you
some suggestions. The editor helps you also by generating some proposals.

Open the Input Name Dictionary(Figure 7):
Dictionary / Input...

I/O Objects have various Control Values (i.e. can be in different states): Di can be
LOW, HIGH or UNKNOWN, Timer can be in one of the states: RESET, RUN, STOP, OVER,
OVERSTOP, etc. For each of these Control Values you can define an input name that
describes its control meaning. If you choose the I/O Object ID and its Input Value, and
click the Add-Key the editor produces for most object types automatically a name in the
Input Name field. The editor does not propose you a name for object types whose Control

21

Value is a number (CMD, XDA, OFUN). If you like it you click again the Add-Key and the
name will be inserted into the list of Input Names. The editor generates the name by
combining the Object name with its (control) Value. Hence, in the example, if you choose
the Object Timer and the Value OVER the editor will suggest the Name Timer_OVER.

Figure 7 Input Name Dictionary

You should not accept uncritically the editor’s suggestions. In many cases, they might
be OK, like for instance the name Timer_OVER. In contrary to this, the names: Di_LOW or
Di_HIGH are not very meaningful names. Therefore, in the example, we have decided that
names: DeviceOn and DeviceOff are better names than the neutral ones: Di_LOW or
Di_HIGH.

A default name “always” is automatically added to the Input Name list. It exists
always in the virtual input; it cannot be removed. It is not shown explicitly in this dialog
window but will be available for specification of the state transition table.

The button ~ is used to define complement control values: see the discussion in the
sub-section “Conditions as logical expressions” later.

The dialog window has a button Create names which generates automatically names
for all objects using their values. The automatic generation applies to all object types except
CMD_IN, XDA and OFUN whose values are integer numbers. The button Create names
creates names on all true values if the button “~” is inactive and names on all complement
values if that button is active.

Another button Delete unused deletes all names which are not used for specification in
ST tables.

22

Initializing the virtual input

By setting an Init mark you can decide that a name is active when the state machine
starts. This is an important point if a name is defined on a value that is not known at system
start-up or on an initial object value.

For instance, after initialization names defined as digital values: FALSE and TRUE are
not present in the virtual input as they are not known. The first change of the digital input
will write one of them into the virtual input. If you know what the value of a digital input
will be on start-up you can initialize the virtual input to the corresponding Control Value. If
you do not know the value you had better set it as UNKNOWN.

Another example could be a Timer. Consider a state machine that resets a Timer in an
Entry Action of the first state after state Init. You could not expect that at this moment the
virtual input contains a name based on the RESET Control Value. The reason is the missing
change of the object Control Value: the virtual input is actualized if the object Control Value
changes. At system start-up, the Timer is initialized into the RESET state. Therefore, the
Reset Action as an Entry Action does not change the Timer state. Hence, the virtual input
will not be actualized. Initializing the virtual input to the name based on the RESET Timer
Control Value would be the correct solution. Of course, you will only do this if you really
need the RESET Control Value for the specification.

DI (Digital Input) Input Names

You can define names for three DI-object Control Values: HIGH, LOW and
UNKNOWN.

In the example we use two Control Values: HIGH and LOW defining two names for
them: DeviceOn and DeviceOff.

TI (Timer) Input Names

The Timer can have the following Control Values: RESET, STOP, RUN, OVER,
OVERSTOP. For each Control Value you can define a name.

In the example we use only one timer Control Value: OVER which means that the
Timer has elapsed. So, we have defined a name: Timer_OVER.
Note: After Initializing the value of a DI object is not known and the virtual input contains no names defined on
digital inputs. The virtual input can be explicitly initialized to certain values by marking the Init flag in the Input
Name Dictionary.

Defining Output Names

(Virtual) Output Names are names invented by a designer to specify Actions carried
out by a VFSM when entering a state (Entry Action), when leaving a state (Exit Action) or
when receiving a (virtual) input name (Input Action) without a state transition occurring.

You are free in inventing Output Names. The comments we have made for Input
Names apply to Output Names too.

Open the Output Name Dictionary (see Figure 8):
Dictionary / Output...

Also in this case, we have not accepted names Do_Low and Do_High proposed by the
editor. Instead, we have specified names: SwitchOff and SwitchOn that explain better what

23

the control does. Note that if we have another device that is switched off by a High signal
and switched on by a Low signal we just change the output value definition but not the
VFSM specification. Another solution would be to change the value of the real digital
output; we will discuss it later with the Project Manager. The VFSM specification specifies
the behaviour of the state machine - we want to say that the device is to be switched on or off
but we do not want to be more specific at this moment.

In other words, for the behaviour specification the details of switching on or off (Low
or High signal or may be even another type of signal) are not defined; you should avoid
defining them at this stage.

The dialog window has a button Create names which generates automatically names
for all objects using their values. Another button Delete unused deletes all names which are
not used for specification in ST tables.

Figure 8 Output Name Dictionary

The automatic generation can be applied to all object types except those which values
are integer numbers (XDA, TAB and OFUN).

DO (Digital Output) Output Names

You can define names for the two DO-object values: High and Low.
In the example we use both values, and define two names: SwitchOn and SwitchOff.

TI (Timer) Output Names

The following Actions can be carried out with a Timer: Reset, Stop, Start, ResetStart.
You can define a name for each Action.

In the example we activate two timer Actions: we reset it and start at the same moment
and we stop it. So, we have defined two names: Timer_ResetStart and Timer_Stop

24

AL (Alarm) Output Names

You can define Alarm names for three Alarm Values: Coming, Going and Staying.
Use Coming and Going values if the erroneous situation can be corrected by itself, for

instance a too low temperature value could increase later and reach the correct value.
Use Staying value if the erroneous situation is an irreversible one, for instance it cannot

be corrected without an operator intervention.
In the example we have defined two names: Alarm_Coming and Alarm_Going.

Filling the state transition table

Filling the state transition table requires a good knowledge of the state machine
execution model [1][2] used by VFSM.

Figure 9 The VFSM execution model

VFSM is a finite state machine that describes behaviour of a system using a Virtual
Environment. The VFSM execution model is a combination of Mealy and Moore types of
automata, allowing Entry Actions, Exit Actions and Input Actions.

Figure 9 shows the execution model. While specifying the VFSM behaviour take into
consideration the following features of the execution model:

• the Entry Actions are carried out only once on entering the state;
• the Exit Actions are carried out only once on leaving the state;
• the Input Actions are carried at any time the VFSM is triggered;

25

• VFSM execution is continued until there are no more transition conditions possible
- this means that one input change might cause many state transitions.

Warning: All state machines are initialised to the state Init. In principle, state machines do not return to state
Init. If you do specify a state machine which returns to the state Init, do not forget that it probably does not
make sense to specify any Entry Action in the state Init because this Entry Action will be not performed on
start-up.

The state machine specification consists of transition specifications and Action
specifications. The transitions may be placed on the ST diagram by “drawing” a transition
between two states. To achieve this you move the cursor over the start state where the
transition is to be specified, click on the right mouse button and move the cursor to the
transition destination state. During the movement a transition arc is displayed. Releasing the
mouse over the destination state you get the required transition on the diagram and the ST
table for the start state opens. The transition to the destination state is already entered in the
ST table. You have now to fill in the transition conditions. A transition can be deleted at any
time on the ST diagram by selecting it (click with the left mouse on the transition arc) and
pressing the Delete key.

A transition can be also specified by opening a ST table (double click on a state in the
ST diagram) and entering the transition. To update the ST diagram with the new state
transition you just select the diagram again.

In other words, the ST diagram is not only a graphical representation of the state
machine but it can be used to initiate the specification of transitions and Actions. The actual
specification details are defined in the ST table.

Figure 10 Input Name list

Figure 11 Output Name list

26

You fill in the transition table either by writing the State, Input and Output Names or
by copying them from the lists. Of course, we suggest the second approach which allows you
to specify and modify the table quickly and effectively, with less risk of typing errors. The
table fields are context sensitive. Having the cursor in a given field you can open a
corresponding Name list by clicking the right mouse key.

All (Input Name, Output Name and State Name) lists are available as tab windows
(Figure 10, Figure 11, Figure 12) switching according to the cursor position in the fields of
the ST table.

Figure 12 State Name list

Figure 13 shows one state of the OnOff state machine as specified by the StateWORKS
Studio; in the project OnOff you will find the entire specification.

Figure 13 OnOff: The ST table of the state OnBusy

27

Conditions as logical expressions

The Input Action condition and the transition conditions are in this example just single
names. In general, you may use logical expressions similar to Boolean ones. The logical
expressions may contain the two operators: AND (&) and OR (|) but there is no NOT
operator. The VFSM concept does not use the NOT operator as the names are not Boolean
values; they represent several Control Values of a given value (variable). For instance, a
timer may have the following Control Values: RESET, STOP, RUN, OVER, OVERSTOP.

As equivalent for the NOT operator you may use the complement control values
described in the next sub-section.

To see the consequences of this technique let’s to look more closely at the DI object. In
the VFSM technique it has three Control Values: FALSE, TRUE, UNKNOWN. Using the
Control Values you may define three control names for it, for instance: DeviceOff, DeviceOn
and DeviceStatusUnknown. As you see it is different from Boolean algebra where the
variable always takes one of the two values: true or false. In effect, while specifying the
conditions you may use three or more names and not just one Boolean value.

Considering the logical expressions, you may also use brackets if you find the form
more readable. The expression may be then expanded to the standard form. For instance, you
may specify an expression:

(DeviceOff | TimerOVER) & CmdOff

Using menu command:
Options / Expand expression

this expression will be transformed to:
DeviceOff & CmdOff | TimerOVER & CmdOff

In the standard form the AND (&) operator has higher priority than the OR (|) operator.
Warning: Once expanded the expression cannot be reduced to the original form with brackets.

Complement value

In the specification we can use two forms of the control value: true and complement
[10]. A negated control value - its complement - is denoted by the prefix ~ and means any
other value, for that object. For instance, for the above discussed DI object the ~TRUE
means any other value: FALSE or UNKNOWN.

The use of complements within a specification is simple. In the Input Name Dictionary
dialogue window we see the button labelled as “~”. This button is used to complement the
control values. If the button is not pushed (as in Figure 7) the values used are true (not
complemented).

Pushing this button (as in Figure 14) it presents the caption “~”and the values used are
complemented. By default the input names generated on complement values receive the
name with a prefix NOT_ (of course we may rename the default value with any string). We
may use the button “~” when adding (button Add) or modifying (button Modify) input names.
While modifying a name the prefix NOT_ will be added if changing to a complement value
or it will be removed if changing to a true value.

28

Figure 14: Input Name Dictionary with activated button Compliment

Actions as outputs

The same technique is used for outputs. Let’s discuss the DO object which has two
Actions: Low and High. You define two names for these Actions, for instance: SwitchOff
and SwitchOn. The presence of the Action defined by the name SwitchOff means that the
real digital output corresponding to the DO object will be set to Low. Using the Action
defined by the name SwitchOn means that the real digital output will be set to High. As you
see it is essentially different from the usage of Boolean variables which value defines the
output. VFSM technique uses two different Actions for this purpose.

We have already mentioned that the (input or output) name might not express the true
value, i.e. for instance the name SwitchOff may be defined for the Low or High object value
of a DO. The name SwitchOff should describe the effect – what happens on the output and
not which value causes this effect. There is also the possibility of using Invert on any
input/output when specifying the object Properties in the Project, which will need to be taken
into account.

„Always“ Table

The VFSM specification may use the Always table. The Always table specifies Input
Actions that are carried out in all states. You deal (Insert, Append and Delete) with them
exactly as in the other state tables.

Of course, the Always table has nothing in common with the “always” input name - it
is just a similar naming. The Always table is used to define state independent Input Actions,
i.e. actions performed in each state.

29

Saving VFSM

Saving a VFSM the first time you will be asked about the prefix. The editor will
suggest a default prefix using the first three letters of the file name. Normally, you should
accept this.

The prefix is used in the *.h and *.iod files. All names get a prefix that must be unique
in the VFSM project.

Building a VFSM

The menu command:
File / Build

generates files (*.str, *.iod, *.h) that are used by the VFSM Executor.
When building, the Studio signals whether the specification is correctly done. If the

specification table contains errors the Build is stopped, the first encountered error is signalled
on the status bar at the bottom of the Studio window and the cursor is positioned in the field
with the error.

You can test the VFSM using the StateWORKS Lab which is a kind of a simulator that
allows you to debug your control logic without having the controlled device.

Before you can test your VFSM you have to create a project to configure the system,
especially the I/O devices.

Figure 15 OnOff: the ST diagram

Always

CmdOn | DeviceOnCmdOff | DeviceOff Init

1

Cm
dO n

Off

2

Cm
dO

ff

On

4

D ev i c
eO

ff

CmdOn

OffBus y

3

E:

De v iceO n

CmdOff

OnBus y

5

E:
I:

X:

30

Example OnOff

When the specification of the OnOff example is completed the ST diagram shown in
Figure 15 will be displayed. The ST diagram represents general information about the ST
diagram: the states and transitions. In addition, the symbols E:, X:, I: indicates what kind of
Actions are specified in states. Full information is displayed if you place the mouse cursor
over a given symbol.

System Configuration

Figure 16 shows what we have done so far with the example OnOff. We have specified
the behaviour of the VFSM using symbolic names taken from three lists: Input, Output and
State. A state is an internal variable of the system and does not need any translation into the
real world. In contrary to the state, input and output names are just descriptions of some
conditions and Actions in the controlled device or system resources. As the names are not
real signals but only representations of control properties of the real signals we call them
virtual inputs and outputs.

Figure 16 The elements of the virtual specification

The Input and Output Names describe Control Values and Actions of the commands
(MyCmd), the digital input (Di), the digital output (Do), the timer (Timer) and the alarm
(Alarm). The command comes from another state machine or is generated by a system,

Input Names
CmdOff
CmdOn
Timer_OVER
DeviceOn
DeviceOff

Output Names
SwitchOff
SwitchOn
Timer_Restart
TimerStop
Alarm_Coming

States
Init
Off
OffBusy
On
OnBusy

VFSM

Master VFSM
or Operator

My-Cmd
{11
 12}

Di
{LOW
 HIGH}

Do
{Low
 High}

Controlled
Device

Timer
{OVER}

Timer
{ResetStart
 Stop}

Alarm
{Coming
 Going}

System Resources

31

operator, etc. in a form of a number. The digital input comes from the controlled device. The
digital output goes to the controlled device. The timer belongs to system resources, normally,
it is a part of the software. The alarm is usually a part of the software and produces for
instance some text on a display.

The system configuration is prepared by using the StateWORKS Project Manager. For
the OnOff example you have to configure the following I/O objects:

• the Timer and its timeout value
• the Alarm and its text
• the Cmd (where it comes from)
• the origin of Di
• the origin of Do

Opening the Project Manager

In order to configure the system you have to create a project:
Project / New.

Figure 17 The Project window

The project window has two panes. The first pane Object Type contains a list of all
object types available in the project. This is the object type list we have used when creating
the I/O Dictionary. The object types are organized in a directory structure. By opening the
Project Manager, the Object Type pane displays only the highest directory which shows the
basic groups: Input, Output, etc. You may display a specific object type by clicking on the
corresponding directory name.

The second project pane Object Name is in the beginning empty; it will include
objects you configure in the system.

32

Defining the system of state machines

You define the state machine types that will be used in configuration of the system by
adding each state machine to the project. In our first example you have only one state
machine - OnOff. Add it to the project:

Project / Edit / Add.
State machines that are in the project appear at the end of the object type list before the

Unit. A state machine is an object like any other object.
You need the following object types you are going to use in the system configuration:

CMD (MyCmd), TI (Timer), AL (Alarm), DI (Di), DO (Do) and the state machine VFSM
(OnOff).

Configuring the system

With the key New in the Project Window (Figure 18) you can create an object of a
given type. The sequence of creation is irrelevant. You can at any time add and delete objects
or change their properties.

Figure 18 The Project and VFSM Properties windows

33

Create first the VFSM OnOff. In the Object name window, you see the object with a
default name OnOff0. With the key Properties or by double click on the object name, open
the OnOff properties window. The window comprises a list of all I/O objects that are
needed by the VFSM OnOff. The list begins with the Name and Description fields (Text,
Link). The following positions in the left column are just names of all I/O objects used by
the VFSM specification. The right column is still empty as we have not defined yet any other
object.

First of all, we do not like the name OnOff0. So, we change it to OnOff - we have only
one state machine in the project and we do not see any reason to introduce another name as
the name of the VFSM type.

Now, you have to create the objects that belong to this state machine. A click on the
button New creates an object of a type selected in the Object type pane.

If you click now on the top directory name AllType in the Object Type window a list of
all objects defined so far will be displayed in the Object Name window. Alternatively, you
may display only a subset of the objects by selecting a specific group type or specific object
type.

Specifying the object properties

To specify the properties of any I/O object select the object in the Object Name list
which opens the Properties window of this object.

VFSM (OnOff) Properties

The specification of properties of the state machine OnOff is fairly obvious: those are
the names of the I/O objects that belong to the state machine. For the example OnOff we
have used the following I/O names (you are free to use any names you like):

• OnOff_MyCmd
• OnOff_Timer
• OnOff_Alarm
• OnOff_Di
• OnOff_Do

CMD (Command) Properties

Creating object of type CMD you see in the Object Name window the default Name
of the created object. You may change it if you do not like it. By clicking on the CMD object
OnOff_MyCmd in the Object Name window you open the CMD properties window.

The only missing property is the command Type (you ignore in this moment the
Description fields). If you write there the name of the VFSM - OnOff the Project Manager
will pass this information to the data file used by the VFSM Executor and the VFSM
Executor will use the symbolic command names defined (indirectly) during the VFSM
specification.

34

Figure 19 CMD properties window

If you do not write the type the VFSM Executor will not know the names and will react
to command values (numbers) specified in the Input Name Dictionary.

DI (Digital Input) Properties

In addition to the name itself the DI type objects have one specific property: Invert. If
the Invert check box is not marked the digital value is passed as is. Marking the Invert
check box inverts the digital input value.

Figure 20 DI properties window

DO (Digital Output) Properties

The DO type objects are like DI objects. We do not mark the Invert property which
means the values is passed as is.

TI (Timer) Properties

Specifying the TI object you see in the Object Name window the name Ti:01 which
you may change to a more expressive OnOff_Timer. Open the TI Properties window. You
have to specify the timer’s features: timeout Const(ant) (choose for instance 5) and timer
Clock (choose sec). The timeout Const(ant) could be a parameter if you remove the mark By
value. We will try this later.

35

Figure 21 TI properties window

AL (Alarm) Properties

Create an AL object giving it a name OnOff_Alarm. In the Al Properties window for
OnOff_Alarm specify an alarm Text. Do not bother about the Category at this stage – give it
for instance the value 2 (we will discuss this property later).

Introducing I/O Units

Several objects such as: Cmd, Alarm and Timer could be considered as internal system
resources created and managed by the software.

Digital inputs and outputs are signals that belong to the controlled device, i.e. they are
external, physical signals. Usually, they would be organized in groups that are managed by
I/O drivers. StateWORKS software is based on the assumption that I/O signals received and
sent from/to controlled devices exist in units. For simulation purposes the StateWORKS Lab
software recognizes four predefined standard units types: DI16, DO16, NI4 and NO4 that
must be included in projects that are tested by the StateWORKS Lab. In your case you add
DI16 and DO16 unit types to the project:

Project / Edit / Add.
Having the units in the project, create a digital input unit with the name DI16_Unit1

and a digital output unit with the name DO16_Unit3.
The properties of the DI16_Unit1 are:

• Physical Addr = 1
• Di0 = OnOff_Di.

The properties of the DO16_Unit3 are:

• Physical Addr = 3
• Do0 = OnOff_Do.

36

The Physical Address property of the units must not be changed if you want to test the
system with the StateWORKS Lab. The value of the Comm Port property is irrelevant in that
case.

Creating the system configuration

If all I/O Units are defined and all their properties are specified you can create the
system configuration:

Project / Build configuration
Alternatively, you can create all system files (VFSM and configuration files) by

Project / Build All
The results of Build are displayed in the Configuration Error Messages window. The

messages describe fully the completeness of the configuration. There are three kinds of
messages

• Some of the messages are just warnings, such as: a digital input present in the DI unit
has been not used in the system.
• Other messages say that some properties are just default values: you have to decide

whether you have accepted these intentionally or whether you have forgotten to set
the required values.
• Eventually, there are messages that signal a significant error such as a missing

property.

By clicking on the message you enter the Properties window with the missing property.
Irrespective of the messages we always allow the system to generate the ProjectName.SWD
file. We believe that it is important to have the chance to make a test with an incompletely
configured system even if the results might sometimes not be quite predictable.

The ProjectName.SWD file can be used by the StateWORKS Lab to test the system.

Testing the system

When the system is built it may be tested using SWStudio. SWStudio allows starting
the SWLab which is a specific RTDB application. SWLab reads the specification results and
simulates the system behavior being triggered by inputs. The system can be monitored using
SWMon, SWQuickPro, SWQuick or SWTerm. SWMon is a program with GUI which
displays all objects and allows changing of their properties. SWMon allows access to all
attributes of a single object at a time. SWTerm is a similar program but in a form of a
console client with the command line interface.

All programs required for testing the system can be started in the menu Tools. Helps
for those programs are available under menu Help.

37

Starting the StateWORKS Lab (SWLab)

Figure 22 StateWORKS Lab

You start the SWLab by:
Tools / SWLab.

In a running SWLab Lab you can start the RTDB system by opening its SWD file:
File / Open

or restart a running system by:
File / Restart.

The StateWORKS Lab simulates 8 digital inputs, 8 digital outputs, 4 analog
(numerical) inputs and 4 analog (numerical) outputs. The digital inputs are represented by
switches: you can change their positions with the mouse. The digital outputs activate LEDs.
The values of analog input analog output and outputs are shown by analog gauges. You can
change the value of the analog inputs by entering a numerical value (clicking on the number
windows opens the entry windows) or by activating the arrow symbols that
increments/decrements the value by 1 or by 8 (with SHIFT key) or by 64 (with CTRL key).

Monitoring RTDB

The StateWORKS Monitor (SWMon) is used to debug the VFSM system of state
machines, effectively to monitor the RTDB.

You start the SWMon by:
Tools / SWMon.

38

When started, the Monitor displays a dialog window to enter the TCP/IP address and
port.

Figure 23: Connecting to SWLab

Accept the default values: localhost for the address and 59091 for the port number.
Working with SWLab ignore the Password entry as the SWLab does not use a password.

If connected you can display RTDB objects selecting it by:
Select / VFSM

that opens a window with a list of state machines run by Lab.

Figure 24 Selecting the list of state machines

Alternatively, you may display RTDB objects listed in a Unit:
Select / UNIT

that displays a list of I/O-Units present in Lab:

39

Figure 25 Selecting the list of I/O-Units

The most convenient way of displaying RTDB objects offers:
Select / User

that displays a list of all objects in the RTDB. You can now define a list of objects to be
watched in the Monitor (see Figure 26).

The list can be stored on the disk by Save. An already prepared object list can be
loaded from the disk by Get.

The Monitor display (Figure 32) is divided by a horizontal line into two parts. The
upper part contains two lines of edit / display controls. The meaning of the first line of
controls depends on the selected object type: VFSM, UNIT or User. The second line of
controls is used to handle commands.

Figure 26 Selecting the user defined object list

If you have selected VFSM the first line of the upper part displays the VFSM name
and type, and VIN (Virtual Input), for instance:

40

Figure 27 Displaying VFSM virtual input and state

The Virtual Input (VIN) shows the input conditions as numbers (you can see the
numbers in the StateWORKS Studio by activating the [123] icon).

If you have selected UNIT this part displays the UNIT name and type, for instance:

Figure 28 Displaying UNIT name

If you have selected User this part displays the USER file name if the list has been
stored on the disk (or nothing otherwise):

Figure 29 Displaying the name of user defined object list

The Select pull-down menu allows you also to select a command object.
Select / CMD

displays a list of state machine commands:

Figure 30 Selecting the list of state machine
commands

41

The command selected from the list appears in the second line of controls in the upper
part:

Figure 31 Displaying the command name and values

This line displays information about the selected command object, first of all the CMD
name.

The command that the Command object received from a Master of the state machine is
displayed in the second line titled Received. Be aware that the (real) command received from
the Master state machine and the (service) value, which you can send from the Monitor, are
two different things.

You can send a command to the selected Command object by typing the command
name or selecting the name from the pull-down menu and clicking the Send button. The
command can be sent as a real command or as a service one: you trigger the service mode
on/off using the trigger button “-“ to the left of the command buttons. The command object
name becomes bold if the command object is in the service mode. Sending the command as a
real value (service mode off) you overwrite the command real value (from the Master) with
the value sent from the Monitor. Switching to the service mode restores the original real
command value.

If the CMD object has commands with values 1..4 they are shown as buttons with
corresponding command names. Clicking on a command button you send a command.

Monitoring RTDB objects

The lower part of the Monitor display has a variable size. It shows all objects that
belong to the selected VFSM, UNIT or User defined object list. It shows object values and
properties. Both values and properties may be temporarily changed for debugging purpose.

42

Figure 32 The StateWORKS SWMon monitor

Some objects may be tested using a service mode. The service mode means that the
object value is overwritten by a value entered in the Monitor.

Figure 33 The object service mode

If the service mode is disabled (as in the Figure above) the Object value is determined
by the Input (Real value). Enabling the service mode means that the Real value is
disconnected and the Object value is determined by the Monitor entry (Service value).

The Monitor shows objects that belong to the selected VFSM, UNIT or User defined
list. In case of VFSM an object is displayed in the Monitor if it is defined in the I/O Object
Dictionary. You must include an object in the I/O Object Dictionary if you need a condition
(input name) or an Action (output name) for specifying the VFSM behavior. You may use
objects in the system that do not appear in the I/O Object Dictionary. For instance, a
Switchpoint (SWIP object) Limits or Timer (TI object) Const can be parameters. You will
rather rarely define a condition on parameter Control Values. So, there is no need to
introduce the PAR object into the I/O Object Dictionary. Anyway, you can display objects
that are not included in the I/O Object Dictionary, defining your own list of objects (Select /
User).

VFSM objects are grouped together, each group beginning with the object type name.
The following object types can me monitored: ALARM, VFSM, CMD, TIMER, CNT,
ECNT, DI, DO, SWIP, STR, PAR, DAT, UDC, NI, NO, XDA, TAB, OFUN. Each object is
represented by one line. The line contains basically the elements shown below though the
details depend on the object type.

Input
(Real value)

Monitor entry
(Service value)

Object value

43

Type Name Trace
(check-

box)

Control
Value

Value
 (Numerical)

Property /
Service mode &

value
(may be many)

Others

The Type is written only once for a group of objects.
Most of the objects have the Name on the button. Activating the button you may

influence the object: the details depend on the Object type.
All objects have a Trace check-box: marking it enables tracing.

Monitoring AL Object

The ALARM (AL) object line contains a button and the following fields:

Type Name Trace Control
Value

Alarm
Text

Alarm
Category

Alarm
Time

ALARM Text
on a

button

Check-
box

COMING
GOING

STAYING
ACK

COM_GO

String
including
IDS_ and

%references

Integer
(preferred

values:
1,2,4)

dd-mmm-yy
hh:mm:ss

The button carries the ALARM Name and is used to acknowledge the alarm.
There are two alarms sections in the Monitor. For a selected VFSM the first line

always contains the alarm line which displays all alarms generated by the VFSM. Therefore
it has a general name AL. At any time this line shows the last alarm which occurred and has
not yet been acknowledged. If there are more alarms present they wait in a queue (first-in-last
out). Acknowledging an alarm removes it from the display and the next alarm in the queue is
shown. By repeating acknowledgement you can remove all alarms from the queue and the
display will then be empty.

At the end of the VFSM objects all VFSM alarms are shown. Each alarm has there its
line which shows always its Control Value (status): COMING, GOING, STAYING,
COM_GO or ACK.

Monitoring VFSM Object

The VFSM object line contains 3 radio buttons and the following fields:

44

Type Name Trace Run
mode

Hold
mode

Step Input
Action /

Next
state

Control
Value

Service Value
(State)

VFSM Text Check-
box

Selected
if radio-
button
marked

Selected
if radio-
button
marked

Selected
if radio-
button
marked

State Name State Value

The Control Value field displays a few names of VFSM states. The sequence of the
last several states is shown, the left one being the present state. You may scroll the state
sequence thus displaying the history of state changes. The scroll buffer is limited to 1000
characters.

You can overwrite the VFSM State Name by typing the State Value in the Service
Value field. The State Value corresponding to a given name can be found in the *.IOD file of
the state machine. As long as the Service value field contains a number the Master that you
have on the screen "sees" the state corresponding to the number. The true state that you still
see in the Control Value field is overwritten by the Service Value.

You cancel the Service Mode by typing a dash (-) character in the Service Value field.
If you select another state machine to be displayed in the Monitor the Service Mode will be
cancelled automatically.

The radio buttons are used to control the Run/Hold mode of the VFSM Executor. The
first radio button (Run mode) sets the state machine into the Run mode. The second radio
button (Hold mode) sets the state machine into the Hold mode. The third radio button (Step)
is used to perform a Step, i.e. one transition of the state machine if the state transition
condition is fulfilled or Input Actions which conditions are fulfilled or both.

The Input Action/Next State field displays the character A or – separated with the
slash from the name of the next state if the state machine is in the Hold mode. If there is
Input Action due the character A is displayed otherwise the dash (-) sign. If no next state is
due this field displays the word none.

Monitoring CMD Object

The CMD object contains the following fields:

Type Name Trace Control
Value

CMD Text Check-
box

CMD Name or
Value

The CMD object line displays the received command Name (or Value if the commands
are not named).

The CMD object Name becomes bold if the CMD object is in the Service mode.

45

Monitoring TI Object

The TIMER (TI) object line contains a button and the following fields:

Type Name Trace Control
Value

Value

Const
(timeout)

Clock

TIMER Text
on a

button

Check-
box

RESET
STOP
RUN

OVER
OVERSTOP

Elapsed
time

Integer min
 sec

 100ms

The button carries the Timer Name.
You can overwrite the Const value. The Name button is used to restore the original

Const value.

Monitoring CNT Object

The CNT (Counter) object line contains a button and the following fields:

Type Name Trace Control
Value

Value

Const

CNT Text
on a

button

Check-
box

RESET
STOP
RUN

OVER
OVERSTOP

Actual
count

Integer

The button carries the Counter Name.
You can overwrite the Const value. The Name button is used to restore the original

Const value.

Monitoring ECNT Object

The ECNT (Event Counter) object line contains a button and the following fields:

46

Type Name Trace Control
Value

Value

Const

ECNT Text
on a

button

Check-
box

RESET
STOP
RUN

OVER
OVERSTOP

Actual
count

Integer

The button carries the Counter Name.
You can overwrite the Const value. The Name button is used to restore the original

Const value.

Monitoring DI Object

The Digital input object line has the following fields:

Type Name Trace Control
Value

Service mode Service value

DI Text Check-
box

Boolean:
 0

 1

Auto:
- selected: disabled
- not selected: enabled

1/0:
- selected: 1
- not selected: 0

The Value is always the Control Value.
If you do not select the Auto check-box the displayed input value remains the Input

value though the system input is equal to the service value. In other words, the Control
Value always displays the real value (see).

Monitoring DO Object

The Digital input object line contains the following fields:

Type Name Trace Action Service mode Service value
DO Text Check-

box
Boolean:

0
 1

Auto:
- selected: disabled
- not selected: enabled

1/0:
- selected: 1
- not selected: 0

The Action is always the real value.

47

If you do not select the Auto check-box the output value equals the service value. In
other words, the Action always displays the value applied to the (real) output.

Monitoring SWIP Object

The SWIP (Switch-point) object line contains a button and the following fields:

You can overwrite the limit values.
The Value displays the value of the input controlled by the switch-point.
The Name button is used to restore the original limit values.

Monitoring STR Object

The STR (String) object line contains a button and the following fields:

You can overwrite the REG string.
The Value displays the string of the input controlled by the string object.
The Name button is used to restore the original regular expression string.
The On/Off button enable/disables the supervision: clicking on it you may force the

Control Value to OFF.

Monitoring PAR Object

Type Name Trace Control
Value

Value

Low limit High limit

STR Text
on a

button

Check-
box

OFF
LOW

IN
HIGH

UNDEF

Input value:
integer or

real

Number:
integer or

real

Number:
integer or

real

Type Name Trace Control
Value

Value REG On/Off

SWIP Text
on a

button

Check-
box

OFF
ON

MATCH
NOMATCH

DEF
ERROR

Input
string

String
(Regular

expression)

Button

48

The PAR (Parameter) object line contains the following fields:

Type Name Trace Control
Value

Value Low limit/
High limit

Unit Format Initial
value

PAR Text Check-
box

UNDEF
DEF

CHANGED
INIT

Value Value String bool
char
short
float
etc.

Value

The value type of Value, Low limit/High limit and Initial value is defined by
Format. You can overwrite the parameter value. There is no way to automatically restore the
original values if you forget them. There are two parameter types: PP and EP.

The EP parameter name is bold. The EP parameters are saved in a file .RTDB.par.
Hence, after the restart the last parameters shown (set) in Monitor will be loaded. Therefore,
the EP parameter line gets at the end an additional property column Initial value to show the
value defined in the configuration.

The PP parameters are not saved. Hence, restarting the system will load the parameters
set from the configuration file (PAR properties values in the Project Manager).

Monitoring DAT Object

The DAT (Data) object line contains the following fields:

Type Name Trace Control
Value

Value

Unit

DATA Text Check-
box

DEF
CHANGED

UNDEF

Actual
value

String

Monitoring UDC Object

The UDC (Up-Down Counter) object line contains the following fields:

49

Type Name Trace Control
Value

Value

Unit

UDC Text Check-
box

UNDEF
DEF

CHANGED
INIT

Actual
count

String

Monitoring NI Object

The NI (numerical input) object line contains the following fields:

Type Name Trace Control
Value

Value

Unit

NI Text Check-
box

DEF
CHANGED

UNDEF

Actual
numerical value

String

The type of the (Numerical) Value is defined in the configuration.

Monitoring NO Object

The NO (numerical output) object line contains the following fields:

Type Name Trace Control
Value

Value

Unit OnOff

NO Text Check-
box

OFF
CHANGED

INIT
SET

Actual
numerical

value

String Button

The type of the (Numerical) Value is defined in the configuration.
The button OnOff is a kind of Service Mode for numerical output. If OnOff is Off the

NO output is determined by the VFSM. A click on the button OnOff triggers the object state
to ON: in this state the NO output is at any time linked to the parameter that determines the
NO value (corresponds to command On).

50

Monitoring XDA Object

The XDA object line contains the following fields:

Type Name Trace Control Value /
Action

XDA Text Check-
box

Integer

You can change temporarily the object Control Value / Action. After restart the
original value defined in the configuration will be restored.

Monitoring TAB Object

The TAB object has similar fields as the XDA object, the last filed being an Action
field only.

The TAB (demultiplexer output) displays the Index value.You can change the Index
value. After resetting the system the Index has always the value 0.

Monitoring OFUN Object

The OFUN object has similar fields as the XDA object.
The OFUN (Output function) object line displays the Action (function parameter) or

the Control Value (function return value).

Tracing

 If the Trace check-box of an object is marked all changes of object Control Value or
Action are written into a file Trace.txt. The Trace file is open when the Monitor is started.

The Trace file can be closed at any time using the icon:

The Trace file can be opened at any time using the icon:

Tracing can be reset using the icon:

51

Monitoring RTDB using SWTerm

The StateWORKS Terminal (SWTerm) is used to debug the VFSM system of state
machines, effectively to monitor the RTDB. Due to not having a GUI the SWTerm program
is of course less convenient than SWMon but it has some additional features which make its
use interesting.

The basic functionality of SWTerm is equivalent to that of SWMon, i.e. you can get
property values of all RTDB objects and you can set the object values. You may also notify
SWterm as a client of the RTDB which awaits events (Advise function) but the usage is not
very useful, especially if we have many often-changing events – in such a case we prefer of
course the usage of SWMon.

The interesting features of SWTerm are: logging and executing of command files.
SWTerm logs all typed commands and answers. The command file can be either written by
hand or it can be just the log file. The conversion of a log file into a command file requires
only the change of the file extension from .log to .com.

The SWTerm program can be started with parameters which determine the usage of
log and command files:

• -l -> Without this parameter the log file has a name SWTerm.log.
• -r -> Commands and responses will be logged, otherwise only commands.
• -c -> Take commands from the file CmdFileName, otherwise from the console.

You start SWTerm by:
Tools / SWTerm

It opens the command line window where you type in the commands. The reactions
(answers) to the command are also displayed in the command line window.

You find a full description of the SWTerm in [4].

Monitoring RTDB using SWQuickPro

You start SWQuickPro by:
Tools / SWQuickPro

It opens the dialog based application. While connecting to SWLab ignore the password
entry.

The StateWORKS SWQuick monitor is used to display all attributes of a single object
at a time. If connected all RTDB objects are displayed in the window on the left.

On selecting an object (in the example the VFSM OnOff) all its attributes are
displayed. A click on the button Get reads a selected attribute or all attributes if the .all
pseudo attribute is selected. A click on the button Set writes the value entered in the edit box
right to the button into the RTDB. Note that only some attributes may be changed; most of
them are just read-only.

In addition to the “display” section SWQuickPro contains a “test” section that is used
for automatic testing, i.e. for creating command files that can be used for repeated tests in a
step-by-step or continuous mode. Details of the testing facilities are described in [9].

52

Figure 34: The StateWORKS SWQuick monitor

53

SPECIFYING VFSM

What will you learn now?

After the introduction we will specify a more complex VFSM. We want to discuss the
most often used objects.

Example: Flow

The state machine controls a gas flow regulator. The Flow state machine accepts
commands (numbers) and sets an analog signal Flow_Ao and a digital signal Flow_Do. As a
feedback from the attenuator the state machine receives the actual gas flow values as an
analog signal Flow_Ai and a digital signal Flow_Di indicating the regulator position
(open/closed). Three commands determine regulator operations:

1: Open the gas flow by setting the High value of the digital output Flow_Do,
2: Close the gas flow by setting the Low value of the digital output Flow_Do,
3: Regulate the gas flow to the value determined by the numerical output Flow_Ao.

Figure 35 Gas Flow regulator

If the command Open has been carried out the state machine should check whether the
gas valve has been opened. If the valve does not open after a certain time an alarm should be
issued.

Gas Flow
Regulator

gas inlet

54

If the command Regulate has been carried out the state machine should check whether
the gas flow has reached the required value. If the flow cannot reach the value in a certain
time an alarm should be issued.

The actual gas flow is measured and its value delivered as an analog input signal
Flow_Ai to the control system. Normally, it is required that the flow value stays within a
certain limits. If the flow value exceeds the required range the state machine should after
some delay issue an alarm and count this event. If it happens more than a certain number of
times the state machine should issue immediately the alarm if the flow value exceeds the
range.

Defining States

We start our design by drawing a state transition diagram. It does not contain all the
details but it gives a better understanding of the control problem and it forms the basis of the
full specification as expressed in the tables of the StateWORKS Studio. Figure 36 presents
the state diagram of the Flow state machine. We do not say that this is our first ST diagram
for the Flow state machine! Usually, it takes several steps before we generate the ST diagram
that fulfils all of our requirements. In studying this example, we went through several stages;
here we present you just the ultimate solution without the intermediate exercises.

Figure 36 Flow: the ST diagram

Always

a lw a ys

Init

1

S w ip F _ L O W | S
w ip F _ O F F

CmdOpen

CmdRegulate

C los ing

6

E:

C m d O p e n

C
m

d
R

eg
u

la
te

S tandby

5

E:

SwipF_HIGH

CmdClose

CmdRegulate

Opening

7

E:
I:

X:

C
m

d
C

lo
se

CmdRegulateOpen

8

CmdClose
CmdOpen

SwipF_IN

T
im

R
_

O
V

E
R

 | C
nt_

O
V

E
R

B usy

2

E: X:

CmdClose

C
m

d
O

p
e

n

SwipF_LOW | SwipF_HIGH Reg ulating

4

CmdClose CmdOpen

S
w

ip
F _ IN

FlowNotOK

3

E:
I:

55

We prefer to use the Moore model of the state machine. Therefore, the diagram shows
that the states contain Entry Actions but no Input Actions. In addition, we use also a few Exit
Actions.

We have decided to solve the problem using the following states: Closing, Standby,
Opening, Open, Busy, Regularing and FlowNotOK. A detailed description of the states could
be found in the documentation of the Flow state machine.

Note the difference in handling of the alarm situations in states: Opening and Busy. In
the state Opening the Flow_Do output is set to High and the state machine checks whether
the valve is open by testing the value of the Flow_Ai. If the flow does not reach a certain
value within a given time an alarm is issued and the state machine stays in the state Opening.

In the state Busy the analog input Flow_Ao is set to a required value and the state
machine waits until the value of the analog input Flow_Ai is within the required range. If the
flow does not reach the range within a certain time the state machine changes to the state
FlowNotOK where an alarm is issued.

These two different approaches are justified by the different significance of each
failure. In the case of the state Opening the failure is less important and it is enough to alert
the operator who must take an Action and solve the problem. In the state Busy the failure is
serious and the system must take some Action by itself in addition to alerting the operator.
The Flow state machine by itself cannot do more - the appropriate Action depends on the
application and will be, normally, effected by another state machine that “controls” the Flow
state machine. The state FlowNotOK in the state machine Flow is used to “send” the
information about the flow error to another state machine. We will discuss this further when
dealing with a system of VFSMs.

Defining I/O Objects

We specify I/O objects to define Virtual Input and Output Names for object Control
Values and Actions. The MyCmd object is created automatically. Based on the description of
the control problem we define the following I/O objects:

• timers: TimB used in the state Busy and TimO for the state Opening
• alarms: AlaF to signal the flow regulating error and AlaO to signal the flow opening

error
• a digital output: Do to open the flow valve
• a numerical (analog) output: Ao to set the flow value
• a numerical (analog) input: Ai as an actual flow value
• a switchpoint: SwipF to supervise whether the flow value is within the required range
• a counter: Cnt to count how many times the flow exceeds the required range

Defining Input Names

For each I/O object we define names using its Control Value. So, we have defined
three command names: CmdClose, CmdOpen and CmdRegulate on 2, 1 and 3 numbers
correspondingly.

Similarly, we define names TimB_OVER and TimO_OVER for timers using only one
Control Value OVER as we truly need only this condition for the specification.

56

We define input names for Control Values of the SwipF object: Flow_HIGH,
Flow_IN, Flow_LOW, NOT_Flow_IN (note the use of a complement value) and
FlowControl_OFF.

Eventually, we define a name for a Control Value OVER of the Cnt object:
Cnt_OVER.

Defining Output Names

Definitions of Output Names are done similarly as in the previous example: for a given
Action we invent a name that describes it. We have defined only names for Actions that are
really needed by the table specification.

Setting an analog output

The specification of an analog (numerical) Action for the Ao object is the only new
point. The available Output Values for the Ao object are: Off, Set and On. Choosing the
Action Off we determine that the numerical output value will be 0. Choosing the Action On
we determine that a certain value will be set to the numerical output (object Ao). The value is
determined by a parameter that is linked with the Ao object. The parameter and its value will
be determined at system configuration. Choosing the Action Set we determine that the
output value will be set only once, just at this moment when the Action is being performed.

This technique is the simplest one for specifying an analog output. Later, we will learn
two other techniques: using tables and writing a user-specific output function.

Filling state transition table

We begin the state machine specification by drawing the first ST diagram. In the next
step, we analyze each state and complete the specification with all transitions and Actions
that are necessary for the correct functioning of the state machine.

Additional information about the states can be found in the comment fields of the ST
table.
Warning: The counter functions like a a timer. Hence, you have to Start or ResetStart it before you apply the Inc
(increment) or Dec (Decrement) Action.

Configuring the system

The configuration of the Flow state machine contains several new objects that we have
not used in the first example OnOff.

Also in this example we use the top-down approach. So, we begin with the creation of
an instance of the state machine Flow that we name as Flow. Defining the properties of the
state machine (i.e. determining the objects that belong to it) we choose names for all I/O
objects in the system from Flow_MyCmd through Flow_Swip_Range.

57

Specifying object properties

After that, we start specifying the properties of all I/O objects. The properties of
objects: Commands, Timers, Alarms, Digital input and output are specified as discussed in
the first example. Now, we describe the properties of the object types that we have not met
so far.

NO (Numerical Output) Properties

The properties of a NO object type include several values:
Format defines a value type: you can choose it from a list that contains typical

formats, like integer, real, etc..
Unit is auxiliary information used for display: you can choose from a list of prepared

strings like V, mA, etc. or you type any string you like.
Scale Mode decides how the output value will be transformed. There are two modes

available: Lin(ear), Exp(onential).
Scale Factor is a coefficient used to multiply the nominal output value as taken from

the Out Data.
Warning: The Scale Factor should not be 0.

Offset is a value added to the output value.
Out Data is a name of the Parameter object that supplies the output value. In the

example, the output value is determined by the parameter Flow_Par_FlowSetValue.

NI (Numerical Input) Properties

Five properties of the NI object type are the same as the properties of the NO object
type. They differ only in the last property. Instead of the Out Data the NI object type has a
property:

Threshold value is a number: up to this value the input signal is ignored and treated as
0.
Warning: The Scale Factor should not be 0.

SWIP (Switch-point) Properties

Switch-point requires the definition of the Input and two limits. Switch-points can be
set on Input objects that have numerical values (NI, DATA and PAR).

The Limit Low and Limit High values define the range of the input values supervised
by the switch-point (see Figure 37). These limits can be defined directly by value or by a
parameter (deactivating the switch By Value).

58

Figure 37 Switchpoint definition

For the Switchpoint SwipF we have defined the object Flow_Ni_ActualFlowValue as
the input and two limit values: 200 and 240 as limits.

CNT (Counter) Properties

An object of a CNT type has only one property: the timeout Const value. Reaching the
value of Const the Counter signals it with the OVER Control Value. The counter Const
could be a parameter if you remove the mark By value.

For the Flow_Cnt_FlowRangeExceeds we have defined Const = 4.

Specifying I/O Units

The state machine Flow contains three object types that are true external objects,
namely: DO, NI and NO. So, we have added the I/O Units to the project and defined which
inputs and outputs correspond to the objects Do8_Unit3, Ni4_Unit5 and No4_Unit7.

We repeat at this point that the units must have a predefined Physical Address property
if you want to test the system with the StateWORKS Lab. The properties of these units are
summarized in the Table below.

The Comm_Port is not used by the StateWORKS Lab, hence we just set it to 0.

Object type DI DO NI NO
Unit name DI8_Unit1 DO8_Unit3 NI4_Unit5 NO4_Unit7
Physical address 1 3 5 7

t
LOW IN HIGH IN LOW

Input Value

Limit Low

Limit High

59

MANAGING A SYSTEM OF VFSMS

What is a system of VFSMs?

It is a rather rare case to design a significant control system using only one state
machine. If you need many cooperating state machines that will control a complex system
you need an organizational framework that makes the job easier. The StateWORKS Project
Manager offers you the framework to organize a complex control system.

We prefer and indeed recommend a hierarchical system of state machines [7] as
demonstrated in the Gas example below. Of course, you are not limited to a hierarchical
structure. If, for whatever reason, you need a system of freely connected VFSM you can do it
using the StateWORKS Project Manager.

The crucial feature of a system of state machines is the way in which they
communicate with each other. In the RTDB system this communication is done by and
exchange of states and commands:

• States of a (Slave) state machine can be used as inputs to another (Master) state
machine,
• The (Master) state machine can send commands to another (Slave) state machine.

There is a further possible exchange mechanism using other objects, especially XDA.
This type of communication will be presented later as an advanced topic.

Example Gas

The example presents a control system to control a gas inlet of a vacuum chamber used
by semiconductor manufacturers (Figure 38). The system contains a flow control and a
pressure control. The flow regulator supplies a gas to the chamber and it is controlled by the
Flow state machine discussed previously. The chamber is used for a manufacturing process
that requires a certain vacuum in the chamber. The low pressure in the chamber is produced
by vacuum pumps. Effectively, the vacuum in the chamber is determined by the pumps and
the gas flow. The pressure is continuously monitored and if it exceeds the required range the
process is interrupted and the gas flow must be discontinued.

60

Figure 38 A gas flow regulator with a pressure gauge

The system as designed contains 3 state machines: the Flow state machine for gas flow
control, the Press state machine to monitor the vacuum in the chamber and a Gas state
machine that is a Master which coordinates the activities of the Flow and Press state
machines.

The Flow state machine has been discussed in the previous chapter. The Press state
machine can be found in the examples. We will present now the design details of the Master
state machine "Gas" The functioning of the Master state machine can be explained in terms
of the communication rules among state machines in the RTDB system.

Figure 39 A Gas control system

Opening the project

A single VFSM that has no links to other state machines may be specified outside a
project. You can create a project later and include the state machine into it. We handle the
Flow state machine in such a way.

A Master VFSM must “know” the states of other state machines. The linkages among
state machines are managed in a project. Therefore, before you start to specify a system of
several state machines you have to create a project.

Create a project and add to it all state machines that already exist and that you intend to
use in the system. Only the state machines that are in the project are “seen” when defining

Gas flow
regulator

Pressure
Gauge

Process
vacuum chamber

gas inlet

Gas

Flow

Press

61

the specification of a Master state machine. At any time, during the development you can add
additional state machines to the project.

You can remove a state machine from the project at any time.

Specifying the Master VFSM

The Gas state machine is a Master of two Slaves: Flow and Press. It “sees” the Slaves
through their states and sends them commands. The basic behaviour of the state machine is
described by the ST diagram in Figure 40.

The state machine reacts to two commands: 1(Off) and 2 (On). After initializing the
state machine is in the state Off. Receiving the command On it changes to the state OnBusy
sending to the Flow state machine the command CmdRegulate.

If the Flow state machine enters the state Regularing the Gas state machine changes to
the state On sending the command CmdEnable to the state machine Press.

If the state machine Press goes to the state PressOK the Gas state machine goes to the
state OK. Disturbances into the flow cause the Gas state machine to return to the OnBusy
state sending the CmdDisable to the Press state machine.

Bad pressure signalled by the Press state machine must interrupt the process: the Gas
state machine changes to the state OffBusy switching off the pressure monitoring
(CmdDisable to the Press state machine) and cutting off the gas flow (CmdClose to the Flow
state machine).

Figure 40 Gas: the ST diagram

Defining States

The Gas state machine has six states defined in the ST diagram: Init, Off, OffBusy, On,
OnBusy and OK.

62

Defining I/O Objects

The Gas state machine has five objects: an input command that it receives (therefore
CMD-IN), two state machines (VFSM) objects: Flow and Press and two output commands
(therefore CMD_OUT) sent to the Slave state machines.

Defining Input Names

The two Gas command names (CmdOff and CmdOn) are obvious ones: they describe
the input commands of the Gas state machine. The other input names describe conditions
that cover certain state situations of Slaves.

The following text applies only for versions less than 7.0.
You may create complex state conditions in the form of AND-OR logical functions observing the

following rules:

• Any number of VFSM states can be linked together with the OR-operator creating a complex state
condition,
• Any number of state conditions for different state machines can be linked together by an AND-

operator.

Thus, the name Flow_Busy covering two states of the Flow state machine means that the condition is
TRUE if the Flow state machine is either in the state Busy or in the state FlowNotOK. You may be more
specific and call this condition Flow_BusyORFlow_NotOK.

The Flow_StandbyANDPress_Off means that this condition is TRUE if the Flow state machine is in the
state Standby AND the state machine Press is in the state Off.

Specifying state conditions

You specify the following names that described the situations of the Slave Flow:
Flow_Regulating, Flow_Standby and NOT_Flow_Regulating. Note that the name
NOT_Flow_Regulating is a complement of the state Regulating i.e. it covers all states
different that the state Regulating. Similarly, you define the following names based on states
of the state machine Pressure: PressBad, PressOK and Press_Off.

These names will be used for specifying the conditions for state transitions and Input
Actions.

The following text apples only for versions les than 7.0.
To specify the name Flow_Busy you begin with the selection of Flow as I/O Object ID. In the Input

Value window you get the list of Flow states. You choose the state Busy. Clicking on the Add button you see in
the window Name the proposal for the input name: Flow_Busy. If you like it you click again on the Add button
and the entry is copied into the Input Name list. Keeping the Name and I/O Object ID you choose another
state in the Input Value window - FlowNotOK and copy the value into the Input Name list by clicking on the
Add button. Now, under the name Flow_Busy you have two values - states Busy and FlowNotOK. These two
values (states) are linked with the OR operator and will be interpreted as: if the state machine Flow is in one of
the states - Busy or FlowNotOK the condition Flow_Busy will be TRUE.

To specify the name Flow_StandbyANDPress_Off you select first the Name, I/O Object ID and Input
Value for Flow as in the previous case. Then, keeping the Name you choose the Press in the I/O Object ID
window. In the Input Value window you get the list of Press states. You choose the state Off and copy the
information into the Input Name list by clicking on the Add button. Now, under the name
Flow_StandbyANDPress_Off you have one value - state Standby of the state machine Flow and one value -

63

state Off of the state machine Press. These two names are linked with the AND operator and will be interpreted
as follows: if the state machine Flow is in the state Standby and the state machine Press is in the state Off the
condition Flow_StandbyANDPress_Off will be TRUE.

You can define any AND-OR combination of states. For instance, the name xxxx defined as:

Name I/O Object ID Input Value
xxxx VFSM1 state1_1

state1_2
VFSM2 state2_1
VFSM3 state3_1

state3_2
state3_3

represents the following logical condition:

xxxx = (state1_1 OR state1_2) AND
state2_1 AND
(state3_1 OR state3_2 OR state3_3)

and means: the condition xxxx is TRUE if the state machine VFSM1 is in one of the states: state1_1 or
state1_2 and the state machine VFSM2 is in the state state2_1 and the state machine VFSM3 is in one of the
states: state3_1 or state3_2 or state3_3.

Defining Output Names

The list of Output Names contains four items - they are two names that specify
commands: Close and Regulate for the state machine Flow and two names that specify
commands: Disable and Enable for the state machine Press. Note, that the Master state
machine does not use all commands of the state machine Flow.

You define also the Output Name MyCmd_Clear that is then used in the state OnBusy
as an Entry Action. That action is required to avoid a restart of the Gas state machine on
returning the states: Off or OnBusy.

Configuring the system

Using procedure described for a single state machine you create all objects required by
the state machines: Flow, Press and Gas.

Displaying the system

You may display the system of state machines by
View / Vfsm diagram / Show

or by clicking on the icon .

64

It opens a state machines system diagram (SMS diagram) which presents all state
machines configured in the system. For the Gas example you get the display as in Figure 41.

Figure 41 Gas: the SMS diagram

A state machine in this diagram is represented by a rectangle which contains the name
of the state machine, for instance Gas and the type in parenthesis, for instance (Gas). The
state machines are linked by lines with arrows, which correspond to the basic interface
structure among VFSMs:

• An arrow at the top of the rectangle means a command coming from the Master.
• An arrow at the bottom of the rectangle means a Slave state used by the Master.
• A missing arrow means that the Slave does not take a command (at the top) or the

Master does not use the state of a Slave (at the bottom).

By placing the cursor on the arrow you can display a tool-tip with the corresponding
command or state. Those signals are also shown as labels which may be freely positioned or
switched off.

The state machines system diagram (SMS diagram) shows the interface among state
machines very clearly: commands sent from Master to Slave and state data sent from Slave
to Master. This corresponds to a hierarchical structure of the system, which we recommend
using in most situations.

This diagram has also some editing functions, such as:

• A double click on a state machine opens its Properties window.
• A SHIFT+ double click on a state machine opens its ST diagram.
• A single click on a state machine selects a state machine, and at that time also shows

(in red) all the links to and from the selected state machine.

You may also select any link by clicking on it; this may help to identify the linked state
machines in a complex system where several links overlap on the diagram.

One additional point needs to be made. The SMS diagram only shows the formal links
made between the various state machines in the project, but there are some other, "back-
door" methods of communication. For example, the use of a shared PAR object to hold some
parameter. It is also possible to find that state machines are linked through the process, in
that one machine could start a motor and another be influenced by the fact that it is running.

65

These links are not shown on the SMS diagram, for practical reasons. It is good design
practice to restrict all interactions to the formal links shown on the SMS diagram, wherever
possible, and the entire structure of state machines will, in the hands of an experienced
designer, conform to this practice in all but the most unusual circumstances. Links via shared
objects will then be used only to alter some parameters but, in general, not to produce
transitions, and links via the process will be reduced by careful partitioning of the task into
the various state machines. The designer and his colleagues will then be better able to master
the project.

Specifying object properties

For the Flow state machine we just repeat what we have done in the previous example.
The Press state machine represents also no difficulties as it contains only objects

already discussed.
The objects for the Gas state machine are the Slave state machines. They are

represented in the object list by the VFSM states (Flow and Press) and commands sent to
them (FlowCmd and PressCmd).

Having specified the state machines we have created also all other objects we need for
the system. Definition of their properties is a repetition of already shown specification steps.

66

67

SPECIFYING UNITS

A Unit is a list of objects. Any object type can be used to define the Unit. Units are
used by programmers to organize and program I/O drivers.

The most obvious Units are groups of digital inputs (DI) and outputs (DO). Similarly,
systems that process numerical (analog) inputs and generate numerical (analog) outputs use
groups of numerical inputs (NI) and outputs (NO) that usually represents digital values of
numerical (analog) inputs/outputs.

To specify a Unit you have to create a file, in a similar way to specifying a VFSM:
File / New / Unit Document

Figure 42 A UNIT DI8 specification table

You are confronted with a table that is used to specify the Unit´s objects.
A specification of a Unit makes only sense if there exists a I/O-driver that can address

and use the units. For instance, the StateWORKS Lab has drivers that simulate DI, DO, NI
and NO Units as described in the previous sections.

Generally, the Units are application dependent. In the eventual run-time system you
may use either Units that correspond to standard serial and parallel I/O´s or you can use your
hardware specific Units, supported by I/O drivers written for your hardware.

68

69

PRINTING AND PUBLISHING

The ST diagram and the ST tables can be:

• copied into clipboard (Edit/Copy ST table/diagram as Metafile and Directories as
RTF file)
• saved as wmf or jpg files (Edit/Save ST table/diagram as graphics and Edit/Save all

ST tables as graphics)

In addition, by building the vfsm specification is stored as a XML file
(VfsmName.xml). You may display this file in the browser using our tool (vfsmml.dtd and
vfsmml.xsl).

70

71

LINKING TO OTHER APPLICATIONS

StateWORKS run-time systems

The RTDB (Real Time Data Base) is supplied as a library, and is used to build a
StateWORKS run-time system RTDBApp. The application then takes the form of a single
EXE file containing the real time date base, VFSM executor and I/O system. The user
interface can be any program which is able to communicate with RTDB via TCP/IP. An
example of such an application is the SWLab which is used for exercises in the Manual. It is
a RTDB run-time system with simulated I/O.

TCP/IP Link

The StateWORKS execution environment supports the TCP/IP mechanism. The real
time data base of the VFSM Executor serves as a Server in the TCP/IP Client/Server link.

The TCP/IP connection is realized in two phases. In the first phase, the TCP/IP link
between two applications is established - a communication channel is created. After that the
applications can exchange data using this communication channel.

Using monitors: SWMon, SWQuick or SWTerm you are shielded from the details of
the TCP/IP interface. The monitors may run on any computer in the network in which the
RTDB application is running. With a few commands like: connect, disconnect, get, set,
advise, unadvised you can communicate with the RTDB application.

72

73

OTHER TOPICS

Using tables

Generation of analog output values

A pure logic system such as StateWORKS cannot process or directly create analog
values. Analog values are delivered into the system as numerical values (NI objects) and are
translated into Control Values using switch-points (SWIP objects). The Control Values of
the SWIP object are then used for control purposes.

Similarly, the system produces any analog outputs as numerical values (NO objects).
The system can set the numerical value to the output (NO object On or Set) or clear the
output value (NO object Off).

There are several ways to determine the value of the numerical output (see Figure 43).
The numerical output is an output of a NO object. The NO object switches on/off the

value to the output. The On command “closes” the switch between the value and the output.
Thus, if for instance a parameter is the source of value any changes of the parameter will be
transferred to the output. The command Set sets the output only once, transferring the present
parameter value to the output (i.e. the switch between the value and the output “closes” only
for a while to transfer the values to the output). If you want to repeat the transfer you have to
repeat the command Set. The source of the value may be a table value, a parameter or a data
value. The use of a parameter (PAR object) to define a numerical output has been shown in
the Flow example. The use of data (DAT object) is similar and will not be discussed here in
detail.

The TAB object as a source of the output value presents the most flexible solution. It
allows the numerical value to have several values determined by the table entry. The table
entries are parameters or DAT values.

The entire specification of the numerical output consists then of the following steps:
While specifying the VFSM:

• Define a TAB object in the I/O object Dictionary.
• Define output names (in the Output Name Dictionary) that determine the numerical

output values using the TAB object entries (indexes).

74

Figure 43 Determination of the numerical output value

While specifying the project:

• Define a set of parameter objects with required values of the numerical output.
• Define a TAB object that belong to the specified state machine.
• Insert PAR or DAT objects into the TAB object.

If you need a more sophisticated output control you can implement it by writing an
output function.

Example: SetAo

The procedure as described in the previous section is illustrated by a SetAo example. It
is a system with two digital inputs: SetAo_Di0 and SetAo_Di1 and an analog (numerical)
output SetAo_No. The system is to realize a step function on the analog output - the value
should be set step by step to four values, for instance: 0, 500, 1000 and 2000. The steps are
triggered by setting High the input Di0. The input Di1 switches off the analog output,
effectively setting it to 0.

The state machine SetAo has six states. Four of them are used to set (in Entry Actions)
the value of the analog output according to the requirements. In the state Clear the analog
output is switched off. Note the use of Clear Action to remove the input name IncAo by
entering a state.

Start also the Monitor to see the state changes. Notice that from the Monitor you can
change the output values of the steps by changing the parameter values.

We have put the SetAo state machine into the project Other. In this project we also
have other state machines for examples that follow. The RTDB that is in fact the application
may contain several state machines. The state machines may create an integrated system of
state machines as in the Gas project or they are can be quite independent state machines,
each realizing some specific functions.

 PAR
Object

PAR
Object

PAR
Object

PAR
Object

DATA
Object

TAB
Object

[0]

[1]

[2]

[n]

Numerical
output

On or Set

Off

NO
Object

Properties:
Out Data

Out Value

...

...

75

Output functions

It may happen that some requirements cannot be fulfilled using standard objects
offered to you by our system. Especially, tasks that require significant execution time should
run in their own threads so that the VFSM executor is not blocked. These kinds of tasks
should be moved to output functions that are activated by the executor. The output function
object (OFUN) represents the programmer’s interface.

To use an output function you have to specify an OFUN object in the I/O Object
Dictionary. This object appears as an input and output object in Input/Output Name
Dictionaries. In both cases the (input/output) value can be an integer.

Specifying an output name for an OFUN object means that this name will call the
output function. The value for the output name is a parameter for the output function.

Specifying an input name for an OFUN object means that this name will be triggered
by the output function if the return value of the function is equal to the input value.

The XDA object plays an important role in output functions as their private memory.
While specifying the project, in addition to the object name, you have to define the

function name and the unit name. The unit name is the unit that is used when programming
the output function as it contains the list of objects that the output function may access.

The details of programming interface and how to link output functions with the system
can be found in the RTDB Programmer’s Guide [3].

We show here only how to use an existing output function in the state machine
specification.

Example: Stepper

Figure 44 Stepper control

76

Stepper sets the output voltage, setting numerical output Ao and gets the feedback
information about the truly set voltage via a numerical input Ai. Assume that the output
voltage sets a digital to analog converter (D/A) which delivers the required voltage and the
voltage is in turn sensed by an analog to digital converter (A/D), which supplies the
numerical value Ai to the control system. Figure 44 shows objects involved in the Stepper
control.

Stepper should generate several voltage steps, each for a defined duration. In the Off
state the output voltage should have the value 0. The process starts by a command On. At
any moment the stepping process can be interrupted by a command Off. If the output voltage
does not reach the set value in the time prescribed for a given step the system waits until the
required value is reached. The output voltage should have for instance the following form:

Figure 45 Stpper output voltage (Ao)

If the output value does not reach the -10 V in T2 time the system prolongs the step 2
and waits until the set voltage is reached.

Figure 46 Stepper output voltage with delayed second step

We could realize the Stepper control using only RTDB objects. For the sake of this
example we move some Actions to the output function which is going to perform the
following tasks:

• set the timer (Ti),
• set the switch-point (Swip) value and enables it (command On)
• set the numerical output (Ao).

All timer timeouts and switchpoint limit values are defined by parameters.

77

The use of the output function for the Stepper has some (positive) side effects, namely
we can use only one Timer and one Swip object independently of the number of required
voltage steps. Instead, we shall use many parameters.

The ST diagram of the Stepper is as follows:

Figure 47 Stepper: the ST diagram

The Stepper waits in the Off state for the start. On receiving the command CmdOn or
when the DiStart signal is active, Stepper goes to the state Step1Busy where it calls the
output function (SetStep1) and starts the Timer. The output function does the above listed
Actions and Stepper waits until the Swip object signals (Swip_IN) that the output voltage
sensed by Ai has reached the required value. If this is the case Stepper goes to the state Step1
where it switches on a digital output Do1 and disables the switchpoint. The digital output
just indicates that the voltage is ok. Stepper remains in the state Step1 until the Timer is
OVER which causes the transition to the state StepBusy2. The transition condition
Tim_OVER is AND-ed with the switchpoint state OFF to avoid slipping through state on the
control value Swip_IN. When leaving the state Step1 Stepper switches off the digital output
Do1, stops the Timer and switches off the Swip. Processing of the next steps is done exactly
in the same manner.

If you analyze the list of IO objects defined for the Stepper state machine you notice
that it contains several objects (XDA and PAR types) that are not used by the specification of
the Stepper behaviour. The reason is that we require also a list of objects used in the output
function. Instead of preparing a special Unit for the output function we included all objects in

Always

alwaysInit

1 CmdOn | DiStart

Off

2

E:

S
w

ip _ IN

CmdOff

S tep1Bus y

3

E:

T
im

_
O

V
E

R

C m d O ff

S tep1

4

E: X:

S w ip _ IN

Cm
dO

ff

S tep2Bus y

5

E:
T im _ O V E R

C
m

d
O

ff

S tep2

6

E: X:

S
w

ip
_

IN

C
m

d
O

ff

S tep3Bus y

7

E:

T
im

_O
V

E
R

 |
C

m
dO

ff

S tep3

8

E: X:

78

the IO object list for the Stepper state machine. The XDA object is there as a supplier of a
“private” memory for the output function thread.

Implementing combinational systems

Sometimes, a state machine reduces to a pure combinational logic system i.e. a system
that does not need states to “store” the history of input changes. You can use the
StateWORKS Studio to specify such a state-less system.

A combinational system is specified in the Always table. Effectively, such an
application contains one default state Init that always exists in the table. Therefore, you can
specify the combinational system also in the mandatory Init state as its Input Actions. In such
a case the other fields: Entry, Exit, Clear and Transition are meaningless and are not used.

For each output two logical conditions must be specified: the On-function that sets the
High (TRUE) value of output and the OFF-function that clears the output (Low). Note that a
true don’t care situation can be achieved here. For instance, specifying logical condition for
an output Y (A, B, C) as:

you effectively decide that the condition B=1 and C=1 is ignored. If both B and C are
simultaneously TRUE the output Y will not change (remains High or Low).

Example Combi

The Appendix contains a more complex example of a combinational system: COMBI.
This system has three outputs: X, Y, Z and six inputs: A, B, C, D, E and F.

The logical functions are realized as fully defined functions (without any don’t care
input conditions). For instance, the Karnaugh table for the output X looks like this:

ABC
000 001 011 010 110 111 101 100

DEF 000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
011 0 0 0 0 0 0 0 0
010 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0
101 0 0 1 1 1 1 1 1
100 0 0 1 1 1 1 1 1

X

A B´ + B´C Y
A´C´ + B C´ Y´

79

Multi-valued objects

The “natural” variables often used for control are the Boolean ones. The VFSM
concept adds to the Boolean variables multi-valued control variables. In fact, in the VFSM
concept the Boolean variable does not play any special role: it is just a Control Value as any
other multi-valued variable.

Input values

All input and input/output objects (DI, TI, CNT, ECNT, SWIP, STR, UDC, NI, DAT,
PAR, OFUN) “generate” a few Control Values. For instance, a timer (TI) has the following
Control Values: RESET, STOP, RUN, OVER, OVERSTOP. A state machine (VFSM
object) has several Control Values which are its states.

Another problem exists if we have to “translate” a number of values into Control
Values. In certain situations we call the values “commands”. In other situations the values
may represent a movement direction, working mode or some physical value: temperature,
pressure, etc.

 We may try the “traditional” way of representing a value as number of base 2 using DI
objects which are to store Boolean values. It will work at least for integer values. This
solution is not very convenient as the decoding of the values is relatively complex. The
easier way is to use object types which can represent multi-valued variables: CMD, XDA,
NI.

A CMD [7] object can be used either as an input or as an output object. Normally, a
CMD object is an output object in one state machine (Master) and the same object is then an
input object in another state machine (Slave). The CMD object used as an input object
(CMD-IN) can be used also to generate an output name – for details see [8]. The CMD
object is a positive integer: 1, 2, 3, … and its various values are given names that are used as
input names in the Slave state machine and as output names in the Master state machine.
Thus, these names representing the numbers are the Control Values of CMD objects.

An XDA object can be used as an input or as an output object even in the same
machine, the only restriction being: a XDA-input name and a XDA-output name must not be
used in the same state. The XDA object has several functions. It is used to:

• supply a memory for output functions (see “Example: Stepper”, p. 75)
• pass information between RTDB and I/O units
• represent a multi-valued variable
• exchange information among state machine (extending CMD objects)
• storing information in a state machine

A typical usage of an XDA object is to convert the contents of a message to Control
Values: the message is analyzed in an I/O unit and the result is coded into several XDA
values which are then used to define input names for a state machine. The same works for
the other direction: the XDA values are used to define output names that define some
Actions in the I/O unit, or some messages.

The usage of XDA to store information in a state machine should not be overused as it
is nothing other than a kind of flag to store some information to be used in the future. In a
properly designed state machine there should be no need to use this kind of flag.

Similarly, XDA objects should not replace commands in the communication among
state machines. Commands are the proper interface between two state machines. Any

80

additional exchange of control information makes the system more complex and error prone.
The use of XDA for state machine communication will generally mean that the state
machines are not well designed.

The NI object itself is of no direct relevance in control. It can only store a value of any
software type (int, float, bool, char, etc.) but it has no Control Value. Therefore the NI object
does not appear in the IO Object ID list of the Input Name Dictionary and cannot be used
directly to define an Input Name. The Control Values of an NI value can be generated using a
SWIP object: see “SWIP (Switch-point) Properties”, p. 57.

Output objects

Similarly to inputs, the RTDB has not only a digital output object (DO) which stores
and outputs a Boolean value but also a few objects to supply multi-valued outputs: NO,
TAB, AL. The usage of the TAB object has been discussed in “Generation of analog output
values”, p 73. AL objects are used for a very specific function - to generate an alarm.

The only object which is actually used to supply a multi-valued output is the NO object
but it does it in an indirect way. The NO object itself has only 3 output values: Off, Set, On
(see “Generation of analog output values”, p. 73) which are used to pass the true output value
which can be of type PAR, DAT, NI.

In-Out objects

There is a group of objects, which are both: input and output objects: TI, CNT, ECNT,
UDC, OFUN, XDA, SWIP, STR. This feature of these objects allows triggering a change of
its internal state using an Action, which in turn leads to a change of a Control Value which is
based on its state. For instance, starting a timer with an output ResetStart (effectively it is a
timer input) results some time later when the timeout elapses in an OVER timer state which
may be used as an input Control Value.

Figure 48 Timer object

The counter objects: CNT and ECNT have the same features as a TI object. The fourth
counter UDC is different from the CNT object. The UDC object is an event counter which in
addition can be triggered by commands: Clear, Down and Up but does not generate an
OVER state. Its state can be detected and translated into Control Values using a SWIP object,
as for NI objects.

OFUN object can be used only with an output function. The OFUN output is a
parameter passed to the output function defining the task to be done by the output function.
The return value of the output function is the OFUN Control Value.

The usage of the XDA object has been discussed in the previous section.
The usage of a SWIP object has been discussed by describing the translation of multi-

valued inputs into Control Values of an object (NI, PAR, DAT, UDC) supervised by SWIP.
The output to a SWIP object (Off, On) does not influence the Control Value of the
supervised object; it simply enables/disables SWIP functioning. The Control Values
evaluated by the SWIP object reflect the Control Value of the supervised object.

81

The STR object is used for string analysis. Similarly to the SWIP object, a STR object
“supervises” an input object that can be a DAT or PAR with string format. A regular
expression, which defines the string used as a matching pattern, can be hard coded or a
content of a DAT or PAR object. The output to a STR object (Off, On, Set) does not
influence the Control Value of the supervised object; it simply enables/disables /
acknowledges STR functioning. The Control Values evaluated by the STR object reflect the
Control Value of the supervised object. In addition, if matched the result is stored (and
automatically converted into appropriate format) into DAT; PAR, NI or NO objects (the
result may contain several strings).

Principally, the CMD object is also an object that is used as an input and an output but
as we mentioned in the previous section it cannot be used in these two functions in the same
state machine. The object CMD serves as an interface between two state machines.

Using VFSM-Templates

What is a Template?

A complex control system contains several cooperating state machines. They cooperate
by exchanging state and commands. As a rule, any state machine does not need full
information about its cooperating counterparts. A state machine is interested only in a few
(stable) states of its partners and can only send a few commands to them.

When developing the specification of a (Master) state machine that coordinates several
other state machines we would like to have a freedom to alter the Slave state machines. A
development and maintenance process requires steady modification of the state machines. If
the state machines are linked together, any changes in a Slave state machine resulting in
introduction or removing of states and commands may require changes in the Master state
machine.

A Template is a skeleton of a state machine containing definitions of its states and
commands. The Template contains only those states and commands that are interesting for
and used by other cooperating state machines.

When creating a new state machine we decide whether the state machine is Generic or
based on a Template. If the state machine is Template-based the Template can be considered
as an interface among state machines. Other state machines that communicate with a
Template based state machine “see” only the Template.

As a Template contains only a subset of states and commands it may be used as a
common basis for several similar state machines. This makes easy to design a Master of such
state machines. Also changes of a Template-based state machine do not have any influence
on the Master if the Template does not change.

Example: Template

We will illustrate the concept of a Template by a more complex example of the
previously-discussed Gas control system. This time the system contains five state machines:
the Master Gas, the pressure control Press and three gas flow control Flow. We use the
previous VFSM Press. We replace the Flow VFSM by a Template based version. If you
compare the specifications of the Generic and Template based Flow state machines you will
not notice any differences. The only difference is that using the Template based Flow VFSM
you define the Template TFlow as a Slave of the Gas VFSM.

82

Figure 49 Gas with 3 Flow Slaves: the SMS diagram

Specifying a Template

We specify a Template for the Flow state machine opening the Template:
File / New / Template Document

The Template window contains two tables. The state table is initialized with the
obligatory Init state. For the Gas example we have defined: Busy, Flow NotOK, Regulating
and Standby states. Defining commands we have to specify names and command values. For
the Gas example we have used: CmdClose (2) and CmdRegulate (3).

To be used, the Template must be Build like a normal VFSM and added to the project:
Project / Edit

In the List Files of Type window you can select the TMPL type files and Add the
displayed Templates to the Project.

Figure 50 Flow: the template window

83

Generating a Template from a VFSM

Alternatively, we may take the already existing Flow state machine and produce a
Template:

File / Generate Template
A Template is then generated with all Flow states and commands.
By deleting the states (Closing, Open, Opening) and commands (CmdOpen), which are

not used by the Master (Gas) state machine we get the required Template.
This command not only allows you to generate Templates at a later stage in the project

from the state machines designed already, but also to change the basis (Generic or Template)
of the VFSM (see the next section).

Figure 51 Flow: the template generated from existing Flow state machine

Changing a VFSM Template

A state machine (VFSM) must be connected with a corresponding Template. It is done
by definition of the VFSM base and connecting it to the Template. The basis (Generic or
Template) of a VFSM can be changed at any moment. Using:

File / Change Template
you can either change a Generic VFSM to a Template based machine or vice-versa:
a Template based VFSM to a Generic one. When changing a Generic VFSM to a Template
based one you can use Templates that are part of the project (Project/Edit/Add).

Connecting VFSM to Template

A Template based state machine is connected to its Template in the following window:
Dictionary / Input / My Cmd ...

You have to connect each command separately, selecting them on both sides: Template
and VFSM.

The changes to the VFSM basis sometimes require a manual test and adaptation of
VFSM commands: First of all, you have to Add Template commands to VFSM commands.
Then you are free to introduce other commands that you need for the state machine.

Remember that the Master will use only the Template commands.

84

Figure 52 My command window used to connect VFSM to Template

A Template is a way of defining the interface between Master and Slave state
machines. When specifying the system objects in a Project we have to create true state
machines and not Templates. Therefore, in a Project we use state machines that are
connected to corresponding Templates.

Application Notes

The number of topics related to StateWORKS Studio is very large. A User’s Guide
cannot exhaust all of them. Searching for other themes you may consult the Technical Notes
on our web site (www.stateworks.com).

85

87

VFSMS DOCUMENTATION

The files available in the Project/Samples directory in the installation package contain
full documentation of the examples discussed in the manual:

• OnOff - Standard on/off control
• Press - Pressure control
• Flow - Flow control
• Gas - Master flow control (with generic state machines)
• Gast - Master flow control (with template based state machines)
• SetAo - Setting analog output
• Combi - Combinational system
• Stepper – Using output function

For your convenience, the state transitions printout of the first example, OnOff has
been appended to the printed manual.

88

OnOff example

Object ID dictionary

Name Object Type Description
1 MyCmd CMD-IN
2 Timer TI
3 Alarm AL
4 Di DI
5 Do DO

Input name dictionary

Name I/O Object ID Input Value Init
1 always +
2 CmdOff MyCmd 1 -
3 CmdOn MyCmd 2 -
4 Timer_OVER Timer OVER -
5 DeviceOff Di LOW -
6 DeviceOn Di HIGH -

Output name dictionary

Name I/O Object ID Output Value
1 Timer_ResetStart Timer ResetStart
2 Timer_Stop Timer Stop
3 Alarm_Coming Alarm Coming
4 Alarm_Going Alarm Going
5 SwitchOff Do Low
6 SwitchOn Do High

State name dictionary

Name
1 Init
2 Off
3 OffBusy
4 On
5 OnBusy

89

OnOff

OnOff is a simple state machine (vfsm), which demonstrates basic control principle.
It controls switching of a DO output which is triggered by commands:On and Off.
The output changes have to be acknowledged by a feedback signal in a form of a DI
input.
When switching On the feedback is supervised by a timer and in case of failure an alarm
is generated.

Always

This state is a done state.
Nothing happens when entering the state.
The vfsm waits for a command and reacts only to a command Off.

On E:

C:

X:

OffBusy CmdOff

On entering this state the Do is set Low and the vfsm waits for an acknowledgement
from Di.
If the acknowledgement comes the vfsm goes to state Off.
If the command On comes before the acknowledgement the vfsm changes to state
OnBusy.

OffBusy E: SwitchOff

C:

X:

Off DeviceOff

OnBusy CmdOn

90

This state is a done state.
Nothing happens when entering the state.
The vfsm waits for a command and reacts only to a command On.

Off E:

C:

X:

OnBusy CmdOn

All Vfsms starts from this state.
By choosing a suitable next state you decide what action will be carried out
when starting the system.

Init E:

C:

X:

OnBusy CmdOn | DeviceOn

OffBusy CmdOff | DeviceOff

91

On entering this state the state machine sets Do high and starts the Timer.
If Di acknowledges that the controlled device has been switched on the vfsm goes to
state On.
If the command Off comes before the acknowledgment the vfsm switches to state
OffBusy.
If Timer expires an Alarm is generated.

OnBusy E: SwitchOn
Timer_ResetStart

C:

X: Timer_Stop

Timer_OVER Alarm_Coming

DeviceOn | CmdOff Alarm_Going

On DeviceOn

OffBusy CmdOff

92

93

REFERENCES

[1] Wagner F., al.: Modeling Software with Finite State Machines: A Practical Approach.
Auerbach Publications. New York, May 2006.

[2] Wagner F.: The Virtual Finite State Machine: Executable Control Flow Specification. Rosa
Fischer-Löw Verlag, 1994.

[3] SW Software. StateWORKS RTDB Programmer's Guide. Release 5.0.6. 2004.
[4] SW Software. SWTerm.pdf. 2003.
[5] TN1-Virtual Environment.pdf
[6] TN2-What Is StateWORKS.pdf
[7] TN3-Hierarchical system.pdf
[8] TN4-Commands.pdf
[9] TN20-Testing with StateWORKS.pdf
[10] TN22-Complement control values in VFSM concept.pdf
[11] StateWORKS. Specifying state machine – Tutorial. 2005.
[12] StateWORKS. Specifying system of state machines – Tutorial. 2005.
[13] StateWORKS. Specifying RTDB – Tutorial. 2005.
See also other Technical Note on www.stateworks.com.

http://www.stateworks.com/

94

95

Index
always input name 20, 27
Always table 14, 27, 78
Analog input 17, 36, 54
Analog output 36, 56, 73
Build

All 35
configuration 35
Template 82
VFSM 28

combinational system 78
Environment

Execution 17
Virtual 17, 23

Finite state machine
Mealy model 23
Moore model 23, 55
virtual 13, 23

Hierarchical system 59, 64
I/O Object 80

CMD 79
configuring 30
defining 18
Dictionary 18
DO 80
for Flow project 55
for Gas project 62
NI 80
NO 73
OFUN 75, 80
specifying properties 32
STR 81
SWIP 80
Type 19
UDC 80
XDA 79

I/O Unit 34
DI_Unit1 34, 58

Input
MyCmd 29, 55
MyCmd window 83
name 13
Virtual 21

Input Name
Add 19
complement 20, 26, 56, 62
DI 21
Dictionary 19

MyCMd 18
TI 21

Lab 34, 36, 58
Monitor 11, 36

display40
selecting VFSM 38, 41
service mode 41
VFSM objects41

Monitoring
AL 42
CMD 43
CNT 44
DAT 47
DI 45
DO 45
ECNT 44
NI 48
NO 48
OFUN 49
PAR 46
STR 46
SWIP 46
TAB 49
TI 44
UDC 47
VFSM 42
XDA 49

Name
input 18
state 13

Numerical input 55, 67
switchpoint on 57, 73

Numerical output 48, 53, 55, 73, 76
defined by a parameter 56, 73
defined by a table 73

Object properties 57
AL 34
CMD 32
CNT 58
DI 33
DO 33
NI 57
NO 57
SWIP 57
TI 33

Output function 75
Output Name

96

Add 21
AL 23
DO 22
TI 22

Project
create 30
Manager 9
Object name window 30, 32
Object Type window 30
Properties window 32

RTDB 71, 74
Run-time systems 71
SMS Diagram 64
ST diagram 14, 24, 29, 69
ST table 16, 24
State

Init 15
name 15

State machine 55
State Machine Editor 10
State transition

condition 24
diagram 14
filling table 23
table 16

SWLab 10, 36
SWMon 11, 36

SWTerm 11, 50
System configuration 10, 29ff., 35, 56
System of state machines 59
TCP/IP link 10, 71
Template 81

based VFSM 81
changing 83
connecting 83
specifying 82

Unit 67
VFSM

changing to Template 83
Execution environment 10
generic14, 81
opening document 14
Slave 62, 81
system of 59
template 82

VFSM Specification
Defining Input Names 19
Defining Output Names 21

Virtual
environment 17
finite state machine VFSM 13
input name 17, 19
output name 21

SW Studio Quick Reference

ST table and diagram Abbreviations used:
State transition table = ST table
State Transition diagram = ST diagram
State Machine System diagram = SMS diagram

Operation In the ST table In the ST diagram
Short cut What to do Short cut What to do

Remarks

Open ST diagram CTRL/O Command
File/Open

Select state Move cursor to a state field Click on the state in the ST
diagram.

Select transition Move cursor to a state field or a
transition condition field

Click on the transition arrow in the
ST diagram.

Double click on the transition
arrow opens the ST table, with
the cursor in the transition
condition field

Add new state Commands:
Edit/Insert expression

Edit/Append expression

Click on any point in the
STdiagram, It opens the state
name dictionary. After defining the
state name and OK the state
appears on the ST diagram and
the ST table opens.

Delete state Command
Edit/Delete expression

Select state.
Command State/Delete.
Delete or Back key

A deleted state stays in the
State Name Dictionary and
may be still used.
Ultimate deletion is done in the
State Name Dictionary.

Add new transition Commands:
Edit/Insert expression

Edit/Append expression

Click the right mouse over the
state in the ST diagram and drag
the appearing arrow to another
state.
The ST table opens to specify the
state transition condition. The
transition is appended after the last
existing transition.

Click the right mouse over the
state to create a transition to
the same state.

Details can be filled in later if
you prefer. Note order of
transitions defines priority.

Delete transition Command
Edit/Delete expression

Select transition.
Delete or Back key

Open ST table Already open in this mode. Double click on state in the
diagram

CTRL/double click on state
opens a new ST table window.

Open next ST transition
table

CTRL + double click on state in the
diagram

Up to 4 ST tables can be open
at the same time

Display state
information

Entire information is contained in
the displayed ST table.

Position the cursor over the state
name, transition arc, action symbol
(E:, X:, I:)

Move state Click on the state and drag it to the
new position

Scroll ST diagram Use arrow keys or
a mouse scrolling wheel

Scroll ST diagram on
the print page

Use SHIFT+ arrow keys or
SHIFT + a mouse scrolling wheel

Use Print setup to display the
page boundaries.

Zoom ST diagram

to fit the
window size

Use “+” / “-“ keys of the numerical
pad or
CTRL+ mouse scrolling wheel

Default size of the ST
diagram

SPACE

SMS diagram

Operation In the SMS diagram
Short cut What to do

Remarks

Open SMS diagram The icon is visible only for a
selected Project window

Open Properties
window of a state
machine or unit

Double click on the state machine
or unit in the SMS diagram.

Open ST diagram SHIFT+ double click on the state
machine in the diagram.

Move state machine Select the state machine by a click
on it and drag it to the new position. If (View / SMS diagram / Grid

settings) is selected the new
position is on a grid.

Display state machine
information

Position the cursor over the state
machine.

Display command Position the cursor over the arrow
entering the state machine on top.

This is a command sent from a
Master to a Slave state machine.

Display state Position the cursor over the arrow
entering the state machine on
bottom.

This is a state of a Slave state
machine.

Select a link Click on the link The color of the link changes to red.
Display all state
machine links

Select the state machine by a click
on it

The color of all links reaching the
state machine changes to red.

Scroll SMS diagram Use arrow keys or a mouse
scrolling wheel.

Scroll SMS diagram on
the print page

Use SHIFT+ arrow keys. Use Print setup to display the page
boundaries.

Zoom SMS diagram SPACE
to return to
default size
and position

Use “+” / “-“ keys of the numerical
pad or
CTRL+ mouse scrolling wheel

	Introduction
	System specification
	Project Manager
	State Machine Editor
	System Configuration
	System test
	StateWORKS Lab
	StateWORKS Monitors
	SWMon
	SWQuickPro
	StateWORKS Terminal

	Help Files and Other Documents.

	Getting started
	What is the StateWORKS Studio for?
	Opening VFSM document
	Example OnOff

	Defining States
	Defining the Virtual Environment
	Defining I/O Objects
	Defining Input Names
	Initializing the virtual input
	DI (Digital Input) Input Names
	TI (Timer) Input Names

	Defining Output Names
	DO (Digital Output) Output Names
	TI (Timer) Output Names
	AL (Alarm) Output Names

	Filling the state transition table
	Conditions as logical expressions
	Complement value
	Actions as outputs

	„Always“ Table
	Saving VFSM
	Building a VFSM
	Example OnOff

	System Configuration
	Opening the Project Manager
	Defining the system of state machines
	Configuring the system
	Specifying the object properties
	VFSM (OnOff) Properties
	CMD (Command) Properties
	DI (Digital Input) Properties
	DO (Digital Output) Properties
	TI (Timer) Properties
	AL (Alarm) Properties

	Introducing I/O Units
	Creating the system configuration
	Testing the system
	Starting the StateWORKS Lab (SWLab)
	Monitoring RTDB
	Monitoring RTDB objects
	Monitoring AL Object
	Monitoring VFSM Object
	Monitoring CMD Object
	Monitoring TI Object
	Monitoring CNT Object
	Monitoring ECNT Object
	Monitoring DI Object
	Monitoring DO Object
	Monitoring SWIP Object
	Monitoring STR Object
	Monitoring PAR Object
	Monitoring DAT Object
	Monitoring UDC Object
	Monitoring NI Object
	Monitoring NO Object
	Monitoring XDA Object
	Monitoring TAB Object
	Monitoring OFUN Object

	Tracing
	Monitoring RTDB using SWTerm
	Monitoring RTDB using SWQuickPro

	Specifying VFSM
	What will you learn now?
	Example: Flow
	Defining States
	Defining I/O Objects
	Defining Input Names
	Defining Output Names
	Setting an analog output

	Filling state transition table
	Configuring the system
	Specifying object properties
	NO (Numerical Output) Properties
	NI (Numerical Input) Properties
	SWIP (Switch-point) Properties
	CNT (Counter) Properties

	Specifying I/O Units

	Managing a System of VFSMs
	What is a system of VFSMs?
	Example Gas
	Opening the project
	Specifying the Master VFSM
	Defining States
	Defining I/O Objects
	Defining Input Names
	Specifying state conditions

	Defining Output Names
	Configuring the system
	Displaying the system
	Specifying object properties

	Specifying Units
	Printing and Publishing
	Linking to other Applications
	StateWORKS run-time systems
	TCP/IP Link

	Other topics
	Using tables
	Generation of analog output values
	Example: SetAo

	Output functions
	Example: Stepper

	Implementing combinational systems
	Example Combi

	Multi-valued objects
	Input values
	Output objects
	In-Out objects

	Using VFSM-Templates
	What is a Template?
	Example: Template
	Specifying a Template
	Generating a Template from a VFSM
	Changing a VFSM Template
	Connecting VFSM to Template
	Application Notes

	VFSMs documentation
	OnOff example

	References

