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F.  Wagner 

About state machines 
State machines in the (software) control world 

 

1. A state machine 

Automata Theory distinguishes between combinatorial and sequential circuits. If inputs 

determine outputs, we have a combinatorial circuit, otherwise a sequential circuit. A state 

machine is a specific implementation of a sequential circuit. A state machine is known under 

several names: state machine, finite state machine, automata, push down automata (Push 

down state machines), Turing machine, deterministic state machine, statechart (Harel 

Automata). Some of them are just the same. For instance, it is difficult to explain a difference 

between a state machine and a finite state machine as the word “finite” is not 

unambiguously defined. To justify the name finite state machine, shouldn’t we have also 

infinite state machine? The word automaton (automata) is used as a synonym of a state 

machine. In a lexical analysis a specific state machine called parser (also called recognizer or 

acceptor) has been used. 

In this paper a state machine is considered as a description of the system control behavior: 

what to do in all imaginable situations. The base of a state machine is a state as a complete 

information about the history of input changes. States represent all possible situations in 

which a control system may ever be. A diagram in Figure 1 shows the dependencies involved 

in a state machine functioning: both the State transition conditions, and the Action 

conditions are functions of Inputs and a State. 

 

Figure 1. State machine definition 

The true sense of changing states is to perform some actions (except for parser where only 

state changes count). The behavior of the control system is then described by a transition 



 
 

2 
 

table and/or a state transition diagram. The state transition diagram is a graphical 

representation where we use two elements: circles for states and arcs for transitions. To get 

the full information we use for each state a state transition table which contains:  transitions 

and their transition conditions, as well as all possible actions. Actions are performed on 

inputs or state changes. Therefore, we distinguish: 

- input actions performed if input changes 

- entry actions on entering a state 

- exit actions on leaving a state 

- transition actions while state changes. 

Effectively several actions are performed just in the same moment. When an input change 

forces the state machine to change a state, all actions can be performed in the sequence: 

- input action as the input has been changed 

- exit action as the state machine leaves the present state 

- transition action as the state machine changes a state 

- entry action as the state machine enters a new state. 

In practice not all actions are used. For instance, we speak about: 

- Mealy model if only input actions are used 

- Moore model if only entry actions are used.  

Figure 2 shows a state transition diagram of a state machine that controls a pressure in a 

vacuum chamber and Figure 3 shows a state transition table of the state Starting. In the 

example three types of actions are used: input, entry and exit. We do not go into the details 

(syntax) of the presentation as it depends on the tool used (the presented diagram and table 

have been created using StateWORKS development system). 

 

Figure 2. Example of a state transition diagram 
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Several activities are initiated. Waiting for Pressure acknowledgements. Due to a Timer missing 

acknowledgement leads to return to the Idle state. Too hot pump leads to the PumpError state. 

Both erroneous situation generate corresponding alarms. Error by accessing the output function 

returns the state machine also to the state Idle: it does not make sense to supervise the 

pressure without having proper pressure limits (corresponding alarms are generated in Always 

table).

Starting Entry action MyCmd_Clear

SetPressure_Set

Counter_ResetStart

Timer_ResetStart

Ofun_CalcLimit

eXit action Timer_Stop

RequiredPress_CHANGED Timer_ResetStart

Timer_OVER Al_PressureError

PumpError Pump_TooHot

Idle Timer_OVER |

Ofun_OwnerError |

Ofun_ParameterError

Regulating Press_OK

 

Figure 3. Example of a state transition table 

2. State machine in hardware design 

For completeness we mention shortly the role of state machines in hardware design. As a 

rule, they use the Moore model (entry actions only) and the implementation uses a set of 

flip-flops (organized as a register) which state is the state of the state machine. The use of 

state machines is rather obvious: the environment is a pure Boolean one, the tasks are 

relatively simple and limited to single state machines (if the application uses several state 

machines they are not considered as a system of state machines but just single separate 

state machines). The complexity of the control is these days located in the software. 

 

3. State machine in software design 

The real interest of the paper is the use of state machines in software design. The complexity 

of sequential tasks in software is huge. Any not-trivial software is a complex sequential 

system. The extreme examples are the operational systems of computers.  Hence one might 

think that state machine should have been used in software design. In practice they are used 

with care and as a rule they are hidden in the code. There are countless possibilities to code 

a state machine using if-then-else and switch statements. The spaghetti code produced in 

that way can be simplified using a table-based solution. All of them are difficult to 

understand and error prone. The basic source of errors is the state variable that can be 

manipulated everywhere in the code. In case of many state machines the requirement is 

often to consider them as a system of interconnected state machines. In the coded version it 

is rather a dream. 
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4. Why do state machines fail? 

Theoretically state machines could be used in design and implementation of software control 

systems. Everybody knows them as they are at least mentioned in some academic courses or 

trainings but the idea that the entire software can be based on state machines is not 

understood and considered as an unrealistic undertaking. State machines are used in 

informal discussions or to solve some local control problems in a program. Several tools 

based on a state machine have been developed (SDL, UML, ASML only to mentioned what 

the author has tried) but they never found large acceptance. If applied, the tools are used in 

the initial specification phase of the project and then forgotten. 

The specification is never perfect. During implementation several changes are required, not 

only cosmetic but essential ones. They are never done in the specification but directly in the 

code. Over time the gap between specification and implementation is growing. Eventually we 

can only say “in code we trust” as the initial specification has lost any credibility. Solving 

control problems directly in the code is the major reason for software malfunctioning.  

Understanding the software functioning by reading a code increases essentially the cost of 

software maintenance and changes. 

There are several issues that are responsible for the situation. In the following sections we 

will discuss some of them which we regard as essential obstacle in broader application of 

state machines in software practice. First, we show that the implementation model of a state 

machine influences the specification. 

 

5. Implementation model of a state machine 

Thinking of a state machine we must distinguish between a superficial representation of a 

control task and a definite specification of a state machine which is to be implemented. The 

following trivial example illustrates the problem: we want to switch on and off a motor using 

a toggle button (it has one stable position). Pushing the button switches the motor on (if it 

has been off) or off (if it has been on).  We assume that the execution system is triggered to 

perform transition by events: in that case the events are changes of the input DI from LOW 

to HIGH and vice-versa.  

A first solution could be a state machine with 2 states shown on Figure 4. 

 

Figure 4. Toggle 2 

The motor will be switched on in the state _B_On and switched off in the state _B_Off. This 

implementation will work if the execution system performs only one transition at a time. 

Otherwise it will oscillate between states _B_On and _B_Off until the input signal changes to 

LOW.  

A second solution would be a state machine with 4 states shown on Figure 5. In that case the 

motor will be switched on in the state OnBusy and switched off in the state OffBusy. In 

addition, the states OnBusy and OffBusy “delay” the transition to the correspondingly stable 
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states On and Off until the input signal goes to LOW. In this solution the execution system 

allows several transitions at a time. 

 

 

Figure 5. Toggle 5 

The example above shows that there are several specifications of control behavior. In other 

words, each of this specification is correct but the programmer has to program it differently. 

 

Figure 6 Toggle temperature 

A similar toggle problem exists if the trigger signal is a multivalued one. For instance for a 

simple temperature regulation problem (air conditioning or heating) the input signal has 3 

values: Temperature_HIGH, Temperature_OK and Temperature_LOW. To specify the control 

problem for air conditioning, we use two signals Temperature_HIGH and Temperature_LOW 

as shown in Figure 6. The implementation does not restrict the functioning of the execution 

system: one transition or several transition at a time will do. If the air conditioning is off the 

Temperature_HIGH signal changes the state to On (air conditioning will be switched on). If 

the air conditioning is is on the Temperature_LOW signal changes the state to Off (air 

conditioning will be switched off). The coded implementation is in that case extremely 

simple. Due to its sequence of changes: Temperature_HIGH - Temperature_OK - 

Temperature_LOW …  the input signal performs directly the control. 

  

6. Getting logical conditions (Positive Logical Algebra) 

The major problem by implementing of a state machine is the generation of logical 

conditions (State transition conditions and Action conditions). In the hardware environment, 

where state machines have found their original use, this problem does not exist: all signals 
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are Boolean. In contrary the state machines specified and implemented in the software 

require logical conditions that are per se multivalued ones. Examples: 

- Temperature can be at least Low, OK, High 

- Commands may have several values: Init, Start, Stop, Break, Continue 

- In a (hierarchical) system of state machines the Slaves state machines have many states 

that are used in transition conditions of a Master state machine. 

In addition, many input signals can be not known due for instance to a broken cable which 

means that even a digital input signals (considered as classical Boolean values) are in fact 3 

values signals: Low, High, Unknown. The Temperature example needs probably also the 

value Unknown. 

A Positive Logical Algebra solves this problem by creating a Virtual Environment which allows 

specification of state machines for software using multivalued variables. The definition of the 

Positive Logic Algebra can be found in Appendix 1. 

7. Hierarchical system of state machines 

If the control problem is complex enough it is impossible to specify its behavior with a single 

state machine. The use of several state machines could be a solution. The organization of 

such a system of state machines is a very difficult challenge. The coded solution means that a 

programmer creates communication means to exchange information among the state 

machine. This solution is very difficult to understand and test. It is also very difficult to 

present a documentation of the control flow in the software. A hierarchical organization of 

state machine seems to be a solution.  

Statechart implements this idea assuming top-down design. It means that a designer starts 

with an initial bubble which represents the entire control. The initial bubble is then refined to 

express more details of the control. The weak point of the approach is the top-down design 

which often cannot be used in control systems. 

In contrary, using the bottom-up design a designer starts with a specification of elementary 

units like motor control, gauge operation, pressure control, monitoring, emergency 

treatment, etc. The lowest level (Level 3) of state machines has a direct contact with the 

physical world reading hardware signals, measured values and contacting extern devices. The 

state machines on the lowest level are organized in functional groups, each group being 

controlled by a corresponding state machine. The state machines in the Level 2 communicate 

with their slaves accessing their states and sending commands. On the other hand, state 

machines in the Level2 may be controlled by state machines in Level 1 which read their 

states and send them commands. Eventually on the top is a single Master state machine. 

Figure 7 shows an example (copied from [1]). 

In praxis the decision about top-down or bottom-up design is in the praxis not that sharp. 

The analysis of the problem is often done as top-down, the design rather bottom-up. Often 

while coding the method changes; it is a trial-error process. Having a specification tool, it is 

easier to test different approaches, by pure coding approach eventually the programmers 

have to settle for anything. 
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Figure 7. Example of a hierarchical system of state machines 

8. StateWORKS and the use of execution system 

Theoretically it would be possible to code a StateWORKS hierarchical system of state 

machines, but the result will be as bad as by other coded solutions: the first approach will 

correspond to the specification but introducing changes to the program will create gap 

between the specification and implementation. The advantage of StateWORKS solution is the 

use of virtual environment which allows creation of a run time system that just executes the 

specification. Several projects have confirmed that this concept works. 

The StatewORKS concept results in a strict separation of a data flow and a control flow in the 

software: the control flow is realized in in a StateWORKS execution system and the data flow 

in (coded) output functions. 

 

9. The human factor 

Major factor by software development constitutes programmers. Without their acceptance 

any concept will fail. In principle programmers reject any idea which reduces the freedom of 

coding; they assume that they can code any problem regardless of its complexity. It is true 

but the result depends on programmers’ quality: top programmers deliver very good 

software; weak programmers create software catastrophes. Unfortunately, we have not 

enough top programmers. We believe that a use of a state machine specification which is 

executable would make a software development more effective allowing the concentration 

of coding effort on programming of data flow. 

We comment two examples of software development where we have experienced ourselves 

the pitfalls of coding instead of state machine specification. 

- Protocol specifications use state machine presentations. We had to use once a DIAMOND 

failover protocol. Studying the state machine presented in a corresponding 

telecommunication specification we found a rather unusual notation there which makes 

the understanding quite difficult. First of all, we “translated” this diagram into a true 

state machine diagram and contacted the authors of the specifications suggesting 

replacing the state machine diagram in the specification. The contact has shown that the 

authors have rather limited knowledge about state machines and their conclusion was 

that “the programmers will do it”. 
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- Writing a User Interface is a standard occupation in many programs that communicate 

with a user. The controls shown on the screen may generate a message if activated, may 

be shown or hidden, enabled or disabled, etc. A typical approach is a chaotic scenario 

where the activation of buttons, text boxes, radio buttons, combo boxes, etc. is done in 

functions called during execution of the program. In many cases the state of the controls 

depends not only on the functions but on the actual situation (state of the application). 

Hence, we need additional variables which reflect the state of the application. But these 

variables depend also on the situation. In other words, a state machine which states 

define unambiguously the situation would be a recommended solution. But how often is 

this understood and realized? 

 

10. Conclusions 

The paper has discussed the major problems that limit a true use of state machines in 

software: 

- Incomplete understanding of an implementation model of a state machine 

- Restriction of input variables to Boolean values 

- Misunderstanding of a system of state machines 

- Programmers’ resistance to no coding solution. 

We have shown that the use of Virtual Environment allows a full specification of the behavior 

beyond the true Boolean values. Such a specification can be carried out in an execution 

environment which eliminates the burden of coding the control flow. This solution works for 

single state machine as well as a system of hierarchically organized state machines. 
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Appendix 1. The Virtual Environment using Positive Logic Algebra 

Input Names and Virtual Input 
A state of an input is described by Input Names which create a set. For instance: 

- for the input A: Anames = {A1, A2, A3} 

- for the input B: Bnames = {B1, B2} 

- for the input C: Cnames = {C1, C2, C3, C4, C5} 

etc. 

Virtual Input VI is a set of mutually exclusive (active) elements of input names.  

The VI contains always the element always. 

Examples: 

VI = {always} 

VI = {always, A1} 

VI = {always, A1, B2, C4} 

Logical operations on Input Names 
& (AND) operation is a set of input names. 

For instance 

https://en.wikipedia.org/wiki/Virtual_finite-state_machine
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 A1 & B3 & C2= > {A1, B3, C2} 

| (OR) operation is a table of sets of input names. 

For instance 

  A1 | B3 | C4 => [

{𝐴1}

{𝐵3}

{𝐶4}
] 

~ (Compliment) is a compliment of a set of input names. 

For instance 

  ~A2 = {A1, A3} 

Logical expression 
A logical expression is an OR-table of AND-sets (corresponds to disjunctive form of a boolean 

expression). 

For instance: 

 A1 & B3 | A1 & B2 & C4 | C2 = > [

{𝐴1 𝐵3}

{𝐴1 𝐵2 𝐶4}

{𝐶2}

] 

Logical expressions are used to express any logical function. 

Evaluation of a logical expression 
The logical value (true, false) of a logical expression is calculated by testing whether any of the AND-sets 

in the OR-table is a subset of VI. 

Output Names and Virtual Output 
A state of an output is described by Output Names which create a set. For instance: 

for an output Xnames = {X1, X2} 

for an output Ynames = {Y1, Y2, Y3} 

Virtual Output VO is a set of mutually exclusive elements of output names.  

Virtual Environment 
The Virtual Name and Virtual Output completed by State Names create a Virtual Environment VE where 

the behavior is specified. 
 


