
Getting Started with StateWORKS Studio SW Studio 7.2, August 2008

Getting Started with StateWORKS Studio

1/22

SW Studio 7.2, August 2008

Table of Contents

 GETTING STARTED WITH STATEWORKS STUDIO..1

1. OVERVIEW. .. 3
1.1. WHAT IS STATEWORKS ? ... 3
1.2. STATEWORKS STUDIO PROFESSIONAL ... 4
1.3. STATEWORKS STUDIO BASIC .. 4
1.4. STATEWORKS STUDIO LE. ... 4
1.5. RUN-TIME SYSTEMS. .. 5
1.6. ABOUT THIS DOCUMENT ... 5
1.7. INSTALLATION. .. 5

2. STARTING UP. ... 6
2.1. STARTING STATEWORKS STUDIO. .. 6
2.2. THE VFSM EDITOR. .. 7

3. CREATE A NEW PROJECT ... 7
3.1. THE COMBINATION LOCK PROJECT .. 7
3.2. NEW PROJECT: A NEW FINITE STATE MACHINE. .. 8
3.3. SET UP VIRTUAL I/O FOR THE STATE MACHINE. ... 9
3.4. COMPLETE THE STATE TRANSITION DIAGRAM. ... 10
3.5. THE PROJECT WINDOW .. 13
3.6. IMPROVE SECURITY OF THE LOCK. ... 15
3.7. LOCKING .. 17
3.8. SAVE AND CHECK THE DESIGN. ... 17
3.9. A NOTE ABOUT THIS EXAMPLE ... 17

4. TESTING .. 17
4.1. START SW LAB. .. 17
4.2. START SWMON. .. 18
4.3. USE OF SWQUICKPRO. .. 19

5. RESULTS ... 21
5.1. FILES GENERATED: DOCUMENTATION. .. 21
5.2. SPECIAL FILES GENERATED. .. 21
5.3. XML IMPORT/EXPORT. .. 21

6. SYSTEMS OF MULTIPLE VFSMS ... 21
6.1. THE PRINCIPLES. ... 21
6.2. USING THE SMS DIAGRAM. ... 22

7. RUN-TIME SYSTEMS ... 22

8. A FINAL REMARK: ... 22

2/22

SW Studio 7.2, August 2008

1. Overview.

1.1.What is StateWORKS ?
StateWORKS is a set of tools for producing reliable software. The basis is the use of

finite state machines to express the behaviour of a system. These are created by using a
special editor, which operates on State Transition diagrams, in a graphical form, and State
Transition tables, in a text format, holding all the details. These two different expressions
of the same design are closely synchronised throughout the process.

StateWORKS includes powerful tools and techniques for handling complex systems
using many state machines at the same time. Normally, state machine designs start to get
difficult when all sorts of possible error-handling measures have to be added to a design
which would be fine when everything worked around it. This can cause an increase in the
number of states, if not handled correctly. StateWORKS makes it easy to split a design
into a number of state machines, normally arranged in a hierarchy, and to implement the
resulting system. In fact this is one of its strongest points. Most programmers can easily
handle the programming of a single FSM, but it can be tricky to deal with a large number
of them running in a big system.

The finite state model used by StateWORKS is a pure one, from which input-output
processing and numerical computations are kept out of the state machines, which run in
what we call a “Virtual Environment”. They are called “Virtual Finite State machines”
for this reason, and you will encounter the abbreviation “VFSM” in several parts of the
documentation. A VFSM is only aware of significant instantaneous aspects, or states, of
its inputs (including lower-level VFSMs in a hierarchy).

Of course, real physical input-outputs have to be connected, and for this a set of
routines is provided, linked through a Real Time Data Base to the VFSM structure. This
also deals with interconnections between VFSMs and with use of system resources such
as timers. We believe that it is vital to separate the behavioural aspects of software from
the detailed computations it carries out.

The designer constructs formal models of his system, using the StateWORKS tools
such as VFSM Editor. These models are so designed as to be able to be directly executed
by the StateWORKS Executor: a sort of virtual machine running in the system. Coding of
the intricacies of behaviour of software can in this way be avoided. Neither huge amounts
of “if...then…else…” , “switch” and other control statements, nor more formally arranged
code expressing finite state machines, need be generated. An important aspect is that the
models are ”Platform Independent Models” which are exactly the same under test in the
I.D.E. and as loaded into the run-time system. There will, of course, be a need to write
code in the conventional way for user interfaces, data analysis, special drivers etc. and
this code is easily linked to the VFSM structure.

With StateWORKS come tools for testing designs, by manipulating the inputs and
monitoring the results. Using these tools, test may be carried out to include all the
obscure error paths which could be difficult to handle. This testing is easier to perform
and to understand than conventional testing of code, on account of the way in which the
environment can be manipulated in subtle fashion.

3/22

SW Studio 7.2, August 2008

The complete StateWORKS package goes under the name “StateWORKS Studio” and
comes with all the run-time system support software. It is available for various operating
system environments, including Microsoft® Windows® NT, 2000 and XP, and various
styles of UNIX™ and Linux. Versions are also available for smaller real-time operating
systems, such as VxWORKS and O.S.E.

y using StateWORKS, it is possible to make huge improvements in productivity.
Typically, a project requiring 5 programmers over 18 months could be done with 3
programmers over 15 months, and with much less after-delivery maintenance to be done.
It has even been known for an expert to carry out a 6-month project within 3 weeks! One
hears a lot about “code re-use” these days, but it is not always easy to do, as code is hard
to fully understand. StateWORKS offers the possibility of “component re-use” on a large
scale, as the VFSM models are well documented and easy to understand, by comparison
with code of similar complexity. The full product is very complete, of course, and takes
some time to fully understand: just the RTDB Class Library Manual has over 160 pages
but many users will not need to refer to it.

1.2.StateWORKS Studio Professional
This is the standard and very complete system, with the I.D.E. for design and the

Standard Executor for the target system. The Standard Executor includes the real-time
data base, and a small A.P.I. library plus source code examples are included to make it
easy to connect to other software.

In its normal off-the-shelf version it runs under Microsoft Windows NT, 2000, XP, XP
embedded or CE but versions for Linux or other Unix variants can be supplied. And of
course variants for other real-time systems, even disc-less, are available on request.

1.3.StateWORKS Studio Basic
This is similar to Pro above but has a limited scope – design and run-time systems are

limited to 300 “objects”. It is suitable for small systems, and is sold at a much lower
price.

1.4.StateWORKS Studio LE.
For evaluation purposes, for educational use, and for the design of very small systems

in which a single VFSM is sufficient, a low cost version of StateWORKS Studio is
available. This does include the Standard Executor for Microsoft Windows.

The main restriction is that the “Limited Edition” or LE version can only handle a
single finite state machine (but it can display systems of VFSM if provided from an other
source): it does not deal with the “SMS Diagram”. Of course, the clever designer might
find a way to use Studio LE to design a system with several VFSMs, by inventing means
of inter-connecting them. If you wish to do that: good luck! But try to follow the general
guidelines we give for use of the full products, so that you can eventually upgrade and
save a lot of hassle.

4/22

SW Studio 7.2, August 2008

StateWORKS Studio LE is available for download, with a 30-day useage limit. The
time limit is only removeable by purchasing our book: Modelling Software with Finite
State Machines. Each copy of the book contains a unique registration code.

For practical reasons, StateWORKS Studio LE do not have specific documentation
and Help files: the differences will be quite obvious when you use this product.

1.5.Run-time Systems.
We recommend use of the complete StateWORKS Executor products for general use

in run-time systems, and it is possible in many cases to use the Standard Executor,
supplied with StateWORKS Studio for this purpose. You may remember that we
mentioned above that the models produced by StateWORKS Studio can be executed
directly: this possibility is used for testing a design. In fact the design under test is
working exactly in the same way as the run-time system in a target computer, using a
special version of the StateWORKS RTDB.

It is also possible to work with our VFSM Run-Time Library: also provided free of
charge. This may be suitable for smaller systems where the RTDB is considered too big
to be installed easily, or for systems where the user wishes to be in closer control of
execution.

The various tools communicate by means of a TCP/IP interface. This could be used,
for example, to permit a Windows 2000® computer to supervise a system running in a
Linux computer. It could also be applied to situations in which an “Industrial PC”
connects to its input-output units over a network, using TCP/IP. Ask your distributor for
more information on this topic.

1.6.About this Document
We need to point out that the example you are requested to work though in this

“Getting Started Guide” is only meant to help you to familiarize yourself with the
development tools. It is not a very good illustration of the benefits of StateWORKS, as
the input can be a stream of numbers, the transition conditions are very simple, and it
only involves a single finite state machine. So in fact the traditional state machine design
and programming methods described in various text books could be used for this project,
which creates a sort of “deterministic” state machine as encountered in parsing text.

The way in which the “virtual environment” needs to be specified when designing a
state machine, and then the real environment defined in the project editor might seem
clumsy to the newcomer, but is a vital feature of StateWORKS as it permits the use of
many instances of a state machine to be used in one or many projects, with suitable
configuration in each case. It is one of the features which gives StateWORKS its
immense power to simplify large and apparently complex projects, and we encourage you
to learn how to use it effectively.

1.7.Installation.
The installer will have allowed various options for the directories. Normally, all the

tools and associated help files are placed in the C:\Program_Files\SW

5/22

SW Studio 7.2, August 2008

Software\StateWORKS Studio LE folder. Various project files are located in a Projects
folder, and each project has its own directory. Note that VFSM designs are easily re-used,
so these are always stored in the projects\VFSM folder, rather than with the project(s)
using them. On opening a project, you will be asked for the paths to the VFSM and UNIT
folders holding files associated with it, if the project can not locate them.

The installer should have set up the configuration data correctly for the “Tools” such
as SWLab, SWMon and SWQuickPro. Each tool needs to know the path for finding it,
optionally a home directory, and for SWLab and SWQuickPro the current project is
normally selected, by setting the Argument as $Project.

Although the software can be used with a screen resolution of 800 x 600, we strongly
advise a large screen with a much higher resolution: 1280 x 1024 for example.

2. Starting up.

2.1.Starting StateWORKS Studio.
Open the StateWORKS Studio editor, by selecting though the Start -> Programs

menus, or by using a short cut if installed, or double-click on “SWStudio.exe” in the
appropriate directory.

The window will open, with a project called “CombLock” (unless you have already

been working on a different project.). We suggest that you should close the project with
Project -> Close, and start from the beginning in order to learn. Close also the VFSM
window if you had opened it.

6/22

VFSM
window

Project
window

SW Studio 7.2, August 2008

2.2.The VFSM Editor.
To start a new VFSM design, use File -> New -> VFSM File -> Generic. This will

open a new window marked VFSM1. The title can be changed if, later, you use Save.
Notice that the menu items at the top of the Studio Editor window change, according to
whether you have selected the Project window or the State Diagram, which we shall refer
to as the ST diagram from now on.

This window has not too much at first. The box labelled “Always” is there for
technical reasons, but you will find it convenient to use it so as to add your comments
about this design. A double-click on this box opens a test window, with a Comment field
at the top. Write something such as “My first test.” and then close the window. (The
Always box in fact allows for input events to sponsor “Input Actions” not related to any
state, which is occasionally useful. For example a VFSM could be a degenerate case with
just a logical expression inside it. Don’t worry about this for the moment!).

The diagram has one State shown, as a disc. This “Init” state is the obligatory state
where any VFSM must start. Double-click on it, and there will be a table opened in a new
window (state table). If you explore this, any time you click on a section of this table, an
explanation of its purpose will be displayed. The “Init” state cannot be removed but it can
be renamed.

3. Create a new project

3.1.The Combination Lock Project
Now for a short tutorial: a combination lock has been chosen. This is a very simple

design, but it illustrates several important points about StateWORKS.

7/22

VFSM window with
one state Init and the
always field

State
table

SW Studio 7.2, August 2008

The combination lock is an electronic version of a popular design of lock for safes and
filing cabinets. Its workings were very amusingly described by Richard Feynman, in his
auto-biography “Surely You Are Joking, Mr. Feynman?” and he learnt about them while
working at Los Alamos on the Manhattan project. A single knob, with a scale 0 – 100,
has to be turned to a sequence of four positions, going in alternate directions, and the
door can then be opened. For this example, we assume that the knob has first to be turned
“upwards” towards the first number. As Feynman discovered, there are some tolerances
so that ± 2 steps from the correct position may be acceptable.

3.2.New project: a new Finite State machine.
To create a new project use File -> New -> Project menu. Enter the project name

“Comb_Lock2” and ensure the project folder will be created in the proper directory. We
shall not use the project window for a while, as we shall design the lock as an abstract
model, before we link it to the real-world environment. This is an important feature of
StateWORKS: state machines designed in this way can be taken and used in various quite
different projects, as components, so we need to bear in mind that there are always the
two views; the abstract VFSM design and its concrete instances in the various projects.

Create a new VFSM file using File -> New -> VFSM file -> Generic. Here we will
design the ST diagram for CombLock2 VFSM. You need to design a finite state machine,
which means inventing states and transitions between them. Start by putting a few state
symbols on the diagram: double-click on a blank area to the right of the Init state symbol.
A list “State Name Dictionary” opens.

The list only has Init, greyed-out because you can not remove this state. Enter a name
“Start” in the text box, and click on Append to put this new state onto the end of the list.

8/22

SW Studio 7.2, August 2008

With O.K. you will see the new state on the ST diagram. (The reason why a Start state is
wanted will be made clear in a moment.) Repeat to add states “Number1, Number2,
Number3 and Number 4, one at a time. Move the symbols around, using the mouse, to
make a nice arrangement.

3.3.Set up Virtual I/O for the state machine.
Now we see that we do not know how

to set up the transition equations. It is
clear that we shall need to know about
the position of the big knob, so open the
list of I/O Objects by selecting
“Dictionary -> I/O Object…” on the
tool-bar and select a NI object
(Numerical Input) from the Type drop-
down list in the centre at the top of this
window. Set the Id name to “position”,
and Description to “Knob”. The Add
button adds this object to a list. Keep this
I/O Object Dictionary window open.

Next, we need to set the knob
positions for the four numbers. For this
we can use the SWIP object. The SWIP
(switch-point) examines a numeric value,
and checks whether it is “in range” i.e.
between the lower limit and the upper
limit. Create 4 instances of this as
follows. Select SWIP as a Type, give it a
name “pos1” and click on “Add”.
Change the name to “pos2” and repeat
the Add, and repeat to add the pos3 and
pos4 objects.

Now we need to set up each SWIP, so close the I/O Object Dictionary window and
open the Input Name Dictionary window, by selecting “Dictionary -> Input…” on the
tool-bar. From the I/O object ID drop-down list, select the pos1 object, and then look at
the drop-down Input Value list which
becomes available to its right: it shows
the possible values “OFF, LOW, IN and
HIGH”. We might not need all of these,
but let us fix input names for LOW, IN
and HIGH values. Select LOW, and then
click on the Name window at the left: a
name is suggested, “pos1_LOW” and it
can be accepted for this design. Click on
Add and the new Input Name is added to
the list. (If you don’t click on Name then

9/22

SW Studio 7.2, August 2008

a click on Add has the same effect, so you can just click on Add twice, in fact!) Repeat
this for IN and HIGH, and then do the same for the other three SWIPs. Close the Input
Name Dictionary window.

SWIP objects can be enabled or
disabled, and the latter is the default
state. We therefore need to be able to
switch them all on, so we need to create
suitable “Output Actions” for the state
machine. Open “Dictionary ->
Output…” and select “pos1” which is
the first SWIP in the I/O object list,
select “On” for a value, and accept the
name “pos1_On” for the action. Repeat
for the other three SWIPs, and click “O.K.” to save the new list.

3.4.Complete the state transition diagram.
Now we have enough of a “virtual input” structure to specify the state machine more

completely. Just to start with, we shall just put the five obvious transitions in place for
correct opening of the lock. Right click on the Init state in the ST Diagram, and drag the

cursor into the Start state. An arrow will be drawn from the Init state to the Start state, to
represent a state transition. A window will open, for setting up the conditions for this
transition. Select the “transition condition” zone to the right of the “Next state” zone: it is
probably already selected, and the Next state is already marked “Start”. (These boxes are
not directly labelled, which can be confusing for a beginner, but if any box in this
window is selected an explanation appears). Don’t write anything: Doubleclick on “A”

10/22

Input name list

SW Studio 7.2, August 2008

(which stands for “always”) on top of the input box to the right. The input name is copied
as a transition condition to the state table window.

We shall not use these other possibilities just now, but notice that, at the top of the
Input name list, there are also the symbols (, & , | ,) besides A: these can also be
selected, so as to compose a Boolean expression. There is no Not available, for very good
reasons.

Keep the Input name list open, and make a transition from Start to Number1. This
time, enter “pos1_ IN” as the transition expression. Repeat for the remaining transitions,
to Number2, Number 3 and Number 4, using pos2_IN, pos3_IN and pos4_IN
respectively.

Now we have a machine which should permit the lock to be opened by setting the
knob to the four defined positions in turn. Each time the knob reached the next position,
the state machine advances to the next state, until it reaches Position4. But with this
design the lock would also open if the knob were to be turned at random for a while! So
we need to add a few more transitions.

Add a transition back from Number1 to Start using the condition pos1_HIGH. This
might have been given a Description “too far up” perhaps. On the ST diagram this second
transition will be a curved line: drag it, using a mouse select-and-drag motion, so that it is
nicely separated from the straight transition in the “forwards” direction. Repeat this
process, adding transitions from Position2, 3 and 4 to Start, using pos2_LOW,
pos3_HIGH and pos4_LOW respectively. Now we have effectively simulated the
combination lock, in that a turn of the knob too far at any stage will kill the unlocking
process.

11/22

SW Studio 7.2, August 2008

Your ST diagram may look a trifle untidy at this stage, so play with it a little. Using
the mouse, move the state symbols, and alter the curves or lines of the transition arrows
to make the diagram look clear and tidy.

Now the SWIPs
need to be enabled.
Open the table for the
Init state and click into
the “Exit Action”
field. Doubleclick on
the “pos1_On” output
name in the output list
to the right in order to
add it to the list of exit actions of state “Init”. Do the same for all remaining output
actions “pos2_On”, “pos3_On” and “pos4_On”. This will ensure that all the SWIPs are
activated when the VFSM starts to function. This is why the Start state was required, in
fact.

Oops: we forgot something! How can this VFSM actually unlock the door? We shall
need another Output action. Open the I/O object
dictionary from the tool-bar menus, or with F5,
and select a DO type – a digital output. Give it a
name Unlock and a description Solenoid, add to
the list, and close the list using O.K. Now open
the Output dictionary, and in the drop-down list
for I/O Object ID, select the new Unlock object.
Go to Output value and select Low, because of
the drive circuit we shall be using, and when you
select Name the name Unlock_Low will appear.
Not brilliant, but click on Add, then on O.K. While we are here, also select a High
Output Value, and add a new output Name. Change this to Lock.

Now we plan to drive the solenoid
when the knob reaches Position 4, so
double-click on the Number4 state, and
then select the “Entry Action” field.
Select Unlock_low in the output name
list to the right. So now the safe can be
opened, in theory. Of course, this
particular safe needs to be wired to a
specific solenoid driver. We did not
setup this item in the project window so
far. Before we do that, add an entry action of Lock to the Start state. Otherwise the safe
could never be locked again.

At this stage it would be as well to save your files, in the usual way by means of the
menu items File -> Save as…CombLock2 . You will be asked to enter a three letter prefix
for your VFSM. Accept the default. You will learn later why we need prefixes. We
always advise saving VFSM designs in a VFSM directory, while the other files should be

12/22

SW Studio 7.2, August 2008

saved in a Project directory. When you use StateWORKS Studio for your own projects
you will no doubt prefer to set up your own directories for them.

3.5.The Project Window
The objects which you created in the VFSM editor are “virtual” rather than real: the

VFSM uses “object control properties” to define the virtual environment. Contrary to
this, objects in the Project Window are specifications of real objects defining their
properties. These real objects can be all handled by the Real-Time Data Base (RTDB)
which is an important part of the StateWORKS system. Virtual objects defined in the
VFSM editor are linked with real RTDB objects in the Project Window. Any object
defined in the VFSM editor may be linked with several incarnations of objects in the
Project Manager. In a significant project, you might need to use half a dozen identical
incarnations of the same state machine, with different properties set for each of them, in
the project window.

IMPORTANT: From the menu bar, select Project -> Edit. Add the VFSM file
“comb_lock2.fsm” to the empty list of files in this project. This now specifies that the
f.s.m. you have designed is going to be part of the project. Technically, this VFSM is in
fact added to the list of objects available to the project, in the same way that many
standard I/O objects are in the list already.

In the Project window you should now start to investigate the list of objects in the left-
hand panel. All sorts of possible objects are listed here, and if you expand the VFSM
section you will see the Comb_lock2 state machine you have designed. Select it, and
click “New”. An instance is created, in the right-hand section, called Comb_lock2:01
which name we can leave for this project as it is.

13/22

SW Studio 7.2, August 2008

Now, still working in the project window, select a NI object in the Inputs group, and
add an instance of this by clicking New. Select a DO in the Output group, and do the
same. Then select SWIP in the Supervisory group, and click on New four times.

If you select “All types” at the top of the left-hand list, you will see all the real objects
in the project. You need to set up the properties of the various objects and you will need
to select physical objects for each of the virtual objects. In most cases there is only one
name offered, and it should be selected.

Select the NI:01 object in order to see the Properties list in the right window. Change
its name to “position” which is easier to remember. Select “ushort” as the format,
“<none>” as the units and “Lin” as the scale mode.

Click then on Do:01 object, rename it to “unlock” and
sent Invert option to “true”.

Now set up the SWIP properties. For each SWIP you
should choose the input number which it will supervise, and
this is always “position” in this project. In a real project we
should set the combination as parameters which could be
changed easily, but to simplify matters we shall set each
limit value directly. Open the properties for the SWIP called
SWIP:01 and select “position” from the list for the Input.
Edit the low limit to, say 64 and the high limit to 68. Repeat
for the other three SWIP objects, entering the limits 31-35,
82–86 and 46–50 respectively.

14/22

Properties window

SW Studio 7.2, August 2008

There is a small problem with the default MyCmd object. If this is left, an ERROR
will be signalled, and although in fact this error can be ignored, we suggest that you
should create something. In the project editor, select a Cmd in the Interfaces, make a new
one, call it MyCmd, and in the properties set a type of CMD-IN.

As the NI and DO objects correspond to physical
input/output, a further stage of configuration is needed, with
“Units”. Use Project -> Edit -> Add to add files for
DO8.unt and NI4.unt which you will find in the “UNIT/”
directory. Then open Unit in the Project window, and make
new NI4 and DO8 units, and set their properties. This
process is only needed when you wish to link I/O to the
functions in SWLab, for testing. The DO8:01 physical
address should be set to 3, and for Do0 select “unlock”.
Then the NI 4:01 physical address should be set to 5, and
“position” selected for Ni0. These actions will link the
SWLab tool to your design.

Now the final stage: we still
need to link the virtual objects
whose properties are used in the ST
diagram window to the real objects
created in the Project window.
Select your VFSM
Comb_Lock2:01 in the Project
window. You will see a list of used
objects here, and for each one you
need to make the link, by selecting
one name in each case. On most
cases there is only one object name
offered, but you will notice that the
SWIP objects could be mixed up
because we have four of them. (This might seem a little ponderous in this rather trivial
project, but in a real, large project, using many objects of each type, we shall appreciate
all the flexibility which it provides.).

Then, at the top, select Project -> Build All. You will see a list of errors relating to
properties not set of the un-used inputs and outputs; just close it, and ignore the errors.

You might like to save or book-mark this section, as the process it describes is very
important and not too obvious if you are not used to it.

3.6.Improve security of the lock.
A little thought will lead to suggestions for improving security. For example, the

solenoid will be activated immediately when Position 4 is reached, even if the knob is
turned further. So one does not need to know the final setting at all! One could introduce
a short delay, before going a new state where the solenoid is energised, and with a
transition to Start activated by turning the knob too far. You can experiment with the

15/22

SW Studio 7.2, August 2008

Timer object if you wish. In this case, we introduce a new rule: after reaching Position 4,
one should turn the knob back a little. So we add a new state “Unlock” which is reached
from position4, on the condition pos4_HIGH, and we move the solenoid activation to this
new state.

Another difficulty is that when you examine the transitions, it is clear that the
transition from Start to Number1 will occur as soon as its SWIP senses the IN condition,
from either direction. This means that, by starting at 100, one can open the lock without
knowledge of the first setting, but only of the second. So another state, called Ready,
should be inserted before Number1, and the transition made immediately from Start to
Ready on the pos1_LOW condition.

Perhaps you are starting now to appreciate how, by discussing a state transition
diagram with a colleague, you might come to see where your design may have
weaknesses, and find ways to correct these, much more easily that if you had started with
coding. In fact, although testing is important, many problems can be identified and
corrected through close study of the ST diagram.

Although, at first glance, the lock seemed to have 1004 = 100 million combinations,
but as Feynman discovered, there are only 204 = 160 thousand, on account of the
tolerances. And until the flaws detailed above are fixed, there are only 400 combinations
to try, starting at 100 for the first number, testing the second and third, and moving the
knob slowly until the solenoid click shows you the fourth! Three hours of work for the
safe cracker, perhaps. Once these flaws are fixed, you might enhance security by adding

16/22

SW Studio 7.2, August 2008

time-outs, and ensuring that any mistake will cause the state machine to stay in Start for
45 seconds or more before it will accept new inputs from the knob.

3.7.Locking
It would be important in a real safe to de-energise the solenoid: in fact it can be so

done by turning the knob, but a better way is to have a micro-switch, indicating Door
Open. When this is active, the solenoid should be shut off and the Start state reached once
more. We assume the door locks by a mechanical latch, but perhaps when it is closed, a
second solenoid should be activated, for a couple of seconds, to lock the door securely.
Check this with your engineers in the design department.

3.8.Save and Check the Design.
Save both the VFSM and the Project, and now in the project menu activate Build All.

An error window opens, and with luck there will not be any errors listed. This action
makes sure that files used by other tools are created, and the documentation aspects are
discussed below. The error window can also show some Warnings, if you change the
project options, and these might be useful.

3.9.A Note About this Example
Please remember that the example is given here merely to illustrate how to use the

StateWORKS I.D.E. and it is not representative of the typical StateWORKS project, in
the following respects:

• It only uses one F.S.M. and you can find very many suggestions for programming
such a system in published articles and books. The real power of StateWORKS is
displayed in projects requiring 10 or more F.S.M. In fact, splitting the behaviour-
control software into a number of F.S.M. is very much more powerful, when
implementing the system, than the StateCharts™ technique of regarding groups of
states as states.

• As the input is a single object, the knob position, the ability of StateWORKS to
handle very complex expressions for transitions or actions is not demonstrated.

• This F.S.M. could be “event-driven” which is a dangerous concept.

4. Testing

4.1.Start SW Lab.
If your design has no serious errors, the Build All command will have set up all the

project files needed for execution by the run-time system, or for carrying out some tests.
On the Tools menu, click on SWLab. Your design is running! You will see an Unlock
output and a position input.

17/22

SW Studio 7.2, August 2008

4.2.Start SWMon.
Now open SWMon in a similar way (Tools -> SWMon). You will see a small tcp/ip

set-up window: accept the default values for Host (= LocalHost) and Port (=9091). Click
O.K. and the Monitor window opens. It does not show much, but a VFSM icon can be
used to show the list of state machines in the system, and you can select Comb_lock:02 to
see what it is doing.

The upper section can be ignored for the present. In the lower section you see a list of
objects, starting with the state machine itself. It is in the Start state and nothing much is
happening, as the NI position input is set to 2048 by SWLab.

18/22

VFSM Icon

Up/down
arrows

Doubleclick the
field to enter a
value

SW Studio 7.2, August 2008

Now in SWLab, using the cursor, or preferably the up/down arrows, alter the setting to
50 or so, and then to 68. This is tricky, but you may note that the Shift key accelerates the
up/down increments by a factor of 8, and the Control key by 64. The state machine
performs a transition to Number1.

Continue, by changing the position value to 33, 84 and 48 in turn, so as to arrive at the
state Position4, and up a little (55) to reach Unlock where the Unlock output line will
pass from 1 to 0 to drive the solenoid. Remember, we had specified an inversion in the
output driver for this function..

4.3. Use of SWQuickPro.
We think that this utility is a little too complicated to explain in this guide, and is best

left for explanation elsewhere. But be aware that it permits command file scripts to be
generated and used for repeating test sequences. Anyway, you may easily try that testing
facility:

- Start SWQuickPro (Tools/SWQuickPro)
- Connect to SWLab (button Connect)
- Load the command file CombLock.swc (button Load)
- Execute the command file using buttons NEXT, RUN, RUN Cont. and

STOP.

If you have studied U.M.L. or Extreme Programming you will know that these
techniques emphasis regular testing of models or of software, to confirm that it is
functioning correctly. StateWORKS Studio assists you to automate such tests, and so
save a lot of time. You can create prepared command scripts, to express what is supposed
to happen in the external environment, and see how the software will react. Using these,
or working by hand with individual commands, you may complete a series of tests, and a
log file can be saved as a record. Furthermore, this log file can be used to form a new

19/22

SW Studio 7.2, August 2008

command script file, and re-used to check that design changes have not had adverse side
effects.

Although much emphasis is given in published literature to the formalisation of “Use
Cases” we must emphasise that such tests need to cover not just the “sunny-day
scenarios” when everything works as it should, but must also explore as many error
possibilities as possible, to see how these will be handled. This can get quite complicated,
and you will also wish to spend time discussing your VFSM designs with colleagues, so
as to detect possible flaws in your reasoning: much easier with reference to an ST
diagram than by going through source code of conventional software.

20/22

SW Studio 7.2, August 2008

5. Results

5.1.Files Generated: Documentation.
Two printing possibilities are provided, for the text file and the ST diagram

respectively.

You may print either of these to a file, in the usual way, and if you have Acrobat
Distiller installed on your computer you can generate .pdf files. The text file may include
the contents of your various dictionaries, as well as the state transition tables: in fact
various options are offered. Don’t forget that you can add comments to the ST tables, and
these will be very helpful in understanding the project later.

5.2.Special Files Generated.
Most of the files which are generated by “Build” are special files, for use by the

testing software and/or the run-time systems of various sorts. The .cpp file, for example,
is used to create a “C tables” which are required to form the RTBD in situations where
there is no disc drive in the target system. You should not need to worry about these files.

5.3.XML import/export.
Designs are exported in XML format by the Build command. This will permit

StateWORKS designs to be processed, and used in conjunction with other tools, or
U.M.L. finite state machine specifications to be used as a basis for a detailed VFSM
implementation, for example. You can look at these files with an Explorer, as the DTD
and XSL are also provided, to produce a pleasing format. On account of the special
features of StateWORKS, it needs to use its specific XML DTD and this is fully
explained in papers which you can access on the Web site.

Future versions of StateWORKS Studio will also provide for XML import of designs,
and other features. So make sure we can contact you, to advise you about upgrades.

6. Systems of Multiple VFSMs

6.1.The Principles.

Although an ST diagram with 10 to 20 states can be manageable, it is often found that
when all the possible system problems are taken into account, the number of states
increases to a point where the design is hard to understand. This problem is best resolved
by splitting the design into one which employs several state machines, working together.
Although the StateWORKS tools permit any arrangement you like for linking these, we
advise the use of a hierarchy. A very large system might use a hundred or more VFSMs,
arranged in five or six levels: StateWORKS can deal with this.

At the upper level, there are masters, and below these there are slaves. The masters
should issue commands to the slaves, while the slaves, being visible to the masters,

21/22

SW Studio 7.2, August 2008

provide state. Technical papers on the StateWORKS web site discuss this issue in some
detail.

6.2.Using the SMS Diagram.
When you have a design using several VFSMs, the special “System of State

machines” diagram (SMS diagram) can be opened, from the project window. This shows
the various VFSMs as rectangles, and shows the command links between them. We
suggest that you open the “gas“ project in the Examples folder, to see how this is done.
The SMS section of the help file provides more information.

7. Run-Time Systems
The files produced by StateWORKS Studio completely define the behaviour of each

VFSM in the project, together with the input-output systems, so that their specifications
can be directly executed by the “VFSM Standard Executor” software module. SWLab is
a ready-built system of Real-Time Data Base plus the Executor, and is not different in
principle from the run-time system. It is possible to use the Standard Executor in many
run-time systems, for example if you are using an “Industrial PC” for your project. The
I/O system is a trifle restricted, but it would be possible to use external I/O units linked to
the computer by a TCP/IP network or though serial lines, for example.

We provide all the tools and documentation needed to build specific systems with your
own input/output drivers, integrated into the real-time data base. The design of the latter
is quite open so special versions are readily produced.

Consult us for further details.

8. A Final Remark:
From here on, after following the guide for an hour or two, you should find that

working with StateWORKS Studio is fairly obvious, and you should get up to speed quite
soon.

Don’t hesitate to use the Help system. Further information and technical papers can be
seen at the Web site http://www.stateworks.com.

If you are happy with the product, tell your colleagues and friends. If you have a
problem, tell us! Perhaps there will be a small misunderstanding, or an error in the Help
files or other documents – give us a chance to fix it! Call your distributor, or e-mail
sw - info@stateworks.com with your complaint, quoting your user code number.

22/22

mailto:sw.info@stateworks.com
http://www.stateworks.com/

	1.Overview.
	1.1.What is StateWORKS ?
	1.2.StateWORKS Studio Professional
	1.3.StateWORKS Studio Basic
	1.4.StateWORKS Studio LE.
	1.5.Run-time Systems.
	1.6.About this Document
	1.7.Installation.

	2.Starting up.
	2.1.Starting StateWORKS Studio.
	2.2.The VFSM Editor.

	3.Create a new project
	3.1.The Combination Lock Project
	3.2.New project: a new Finite State machine.
	3.3.Set up Virtual I/O for the state machine.
	3.4.Complete the state transition diagram.
	3.5.The Project Window
	3.6.Improve security of the lock.
	3.7.Locking
	3.8.Save and Check the Design.
	3.9.A Note About this Example

	4.Testing
	4.1.Start SW Lab.
	4.2.Start SWMon.
	4.3. Use of SWQuickPro.

	5.Results
	5.1.Files Generated: Documentation.
	5.2.Special Files Generated.
	5.3.XML import/export.

	6.Systems of Multiple VFSMs
	6.1.The Principles.
	6.2.Using the SMS Diagram.

	7.Run-Time Systems
	8.A Final Remark:

