
Closing the Gap Between Software Modelling and Code 

   

    F. Wagner 

Free-lance consultant 
ferdinand.wagner@stateworks.com 

T. Wagner 

Free-lance consultant 
thomas.wagner@stateworks.com 

P. Wolstenholme 

CYDON Technology 
p.wolstenholme@computer.org 

Abstract

 If a software implementation is to be generated fully 

automatically from a model, then the model must be 
detailed and totally complete. For the definition of 

software implementing system behaviour, through finite 

state machines, we propose a well-proven method for 
the creation of such models and an associated XML 

expression of them. 

1. Modelling

Construction of software by means of modelling 

techniques is gaining much attention, particularly with 

the release of Version 2 of the Unified Modelling 

Language (UML 2) and various initiatives in Model-

Driven Architecture (MDA). UML is designed as a top-

down modelling method, which permits large complex 

processes and software products to be described in a 

standard way and explored by simulation. It has always 

been hoped that it could lead to the automatic 

production of software: in fact the automatic generation 

of program code. 

The most difficult area of software for embedded 

systems, for telecommunications, and for "reactive 

systems" in general is to ensure that the behaviour of 

the software in all circumstances is well controlled, 

including the presence of unusual combinations of 

external stimuli and of errors. This area is best 

expressed in terms of finite state machines (FSM), 

which are much easier to design, understand, and 

discuss than would be the corresponding program code.  

UML tools from some vendors make serious 

attempts to generate code from such FSM models 

expressed as state charts, but there are major 

difficulties. Unless all the intimate details are in some 

way defined in the model, the code can not be complete, 

and in the typical case only "header files" or some 

equivalent code skeleton can be produced. This is  

inherent in the UML top-down approach to design. 

Speaking about UML 1, Cris Kobryn of Telelogic states 

that "UML 1 was very inept at taking a large 

architecture and chunking it down into sub-systems and 

components" [1]. 

There is hope that UML evolution will improve the 

situation, but some serious difficulties remain.  

2. Agile Programming.

Proponents of agile methods believe that only the 

final code can represent the real software, as a model 

can never contain sufficient detail to express exactly 

what the code would do. So they tend to discount the 

UML process as too heavy and not sufficiently 

effective.  

The authors of this paper agree, to some extent, with 

this view. An initial design of a process and of a 

corresponding software system must be done, in terms 

of a high-level model. The final implementation needs 

to be constructed in a bottom-up sense, where basic, 

simple functions are used to make more complex 

structures, working up until the complete project is 

implemented. This is common practice in software, 

where a large library of functions is available to 

developers, and they write code procedures or services 

around these, testing at each stage, and gradually 

building up the entire structure. In established software 

development environments the software is normally not 

written from scratch but rather in a frame applicable for 

standard applications. Commonly-used development 

tools (I.D.E., compiler etc.) offer ready-made 

frameworks for software development.   

Unfortunately, for many applications such as 

embedded systems, there is in general no equivalent 

library. Also the software development frameworks are 

less standard. Some help may be found from the 

concept of “software patterns” but these only assist re-

use to a limited extent. 
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3. Totally Complete Models 

    If we postulate that a fully-working, well-designed 

and quite bug-free code could be a good expression of 

the process as defined by the requirements, such code 

must express all the information required to run the 

application. Could a model contain all the information 

implied by that code, but in some other form?  Only if 

we could construct such a totally complete model, could 

we expect to generate the exactly-corresponding code 

from it. 

    It seems most unlikely that UML can be used to 

generate such models, without introducing some new 

ideas.

    So what ideas can be put forward?  Over the past 13 

years, work has been progressing on a suitable format 

for expressing behaviour of complex software as 

systems of FSMs. This has culminated in the 

development of a tool which we call StateWORKS 

[2][3], described in section 5 below and which indeed 

facilitates the creation of  totally complete models, from 

which software is automatically generated. 

Figure 1: Generic Finite State Machine 

4.   Finite    State    Machine                   

Misunderstandings

The topic of finite state machines in software has 

attracted a number of misconceptions over the half 

century since the FSM concept was intensively studied 

in relation to hardware and other general systems. 

Regrettably, in software design this has caused many 

practitioners to conclude that the FSM concept is 

difficult to apply to real projects. Some remarks aimed 

at correcting this erroneous impression follow. Figure 1 

shows the generic FSM, whose state sequencing 

depends on the inputs and also on the history of those 

inputs as evidenced in the state. 

Many students are introduced to the FSM in 

software only in the context of the parsing of regular 

expressions, or in general, text streams. The FSM used 

for this purpose is a specialised subset of the general 

case, and is often “deterministic” in that it operates to 

produce a result, and then ceases processing the input. 

Furthermore, the input is a character stream, which is a 

very limited form of FSM input. Based on this case, one 

is easily led to conclude that a transition table is a very 

straightforward affair, and that it would be easily to use 

it as a basic for automatic code generation.  But in a 

typical control-system application, the transition table 

for a FSM needs to take account of a much larger 

number and variety of inputs, often requiring several 

variables to be combined in expressions, and to process 

this table for automatic code generation, in a general 

way, becomes a nightmare.  

The typical software-textbook definition of the 

FSM omits to mention “actions” which, in control 

systems, need to be generated at various stages in the 

operation of the FSM; for instance on entering a 

specific state.  Yet the classical theoretical studies of  

FSM models explain the “Moore Model” and Mealy 

Model” of FSM output, which were studied half a 

century ago: these concepts seem irrelevant to many 

software practitioners. In some cases they are unknown: 

one published proposal to the W3C group [4] takes an 

oversimplified FSM as a basis, and elaborates on this to 

produce the new concept of “transition networks” 

which are nothing more than the classical FSM as 

understood by many hardware designers  

     It is obvious that an FSM operates as a result of 

various changes to its input, and this leads to the 

assumption that an FSM is “event driven” – which is in 

a sense true. But the concept should not be taken too 

far, for control systems, although it is valid for the text 

parsing examples often encountered by programmers. 

Published proposals for generating code for FSMs [5] 

have included schemes in which each incoming event is 

“consumed” by the FSM as it operates. An event which 
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does not cause a transition is discarded in these 

schemes, and this leads to a need to store events which 

might be needed in future, by ensuring that they always 

cause a transition to a new state. With this scheme, the 

number of states required for even a moderately 

complex process becomes prohibitively large, and 

the FSM impossible to grasp intuitively. We stress 

that an FSM must have access to all the inputs 

which will determine its transitions, at the instant 

when any transition expression is being evaluated.  

    To take an example of this point, consider an out-

door security lamp. This should light when 

movement is detected, and remain lit for, say, 40 

seconds after movement ceases. But it should not 

light in daylight, so it incorporates a sensor of the 

ambient light level. Using a classical FSM model, 

we need just two states, the initial OFF state and the 

ON state (Figure 2). The lamp controller passes to 

ON when movement is detected, but only when the 

ambient light level is low.  An entry action to the 

ON state starts a timer, and an “input action” re-

starts the timer whenever movement is detected. The 

transition to the OFF state occurs when the timer 

reaches the time-out delay, and perhaps also when the 

ambient light level has increased.  

Movement_detected & Dark

Init

1

Timer_done | Light

ON

2

E:

I:

Figure 2: Lamp Control by Classical Finite State 
Machine 

    Now consider the equivalent state transition diagram 

for a purely event-driven version (Figure 3). It requires 

4 states and 7 transitions! Of course, in practice there 

are ways around the problem, by means of “guarded 

transitions” but these are in fact a dilution of the event-

driven principle. 

    Many text books, and some published schemes for 

generating code, seem only to consider a single FSM. In 

real control systems, and in telecommunications 

systems, it is usually essential to split the system into a 

number of FSMs, all coordinated in some way, as 

otherwise a single FSM becomes far too complicated to 

understand. Error conditions need to be handled in real 

life, and these are another cause of growth of the 

number of states: a process which seems easily 

expressed as a single FSM, when first designed for the 

case when everything works, might require three or 

more FSMs to provide a totally safe and reliable 

implementation.  A well thought-out strategy for 

dealing with large numbers of concurrent FSMs in a 

single system is required. 

Figure 3: Lamp Control by Purely-Event-Driven 
Finite State Machine  

      A practical, but non-trivial problem is that it can be 

hard to display all the details pertaining to an FSM on 

the “transition diagram” which is a popular design tool. 

      All of the difficulties outlined above can be 

overcome, quite simply, but only with the aid of a few 

important concepts such as those developed for 

StateWORKS. 

5. The StateWORKS Approach 

      This approach is based on a separation between data 

manipulation and system behaviour, and is devoted to 

the development of totally precise FSM models, which 

can then be used with no need to generate code by hand.  

These models control the behaviour of the software, 

which is expressed as a set of FSMs, preferably 

arranged in a hierarchy. Each FSM is sufficiently 

simple to be examined, understood and discussed by 

designers and their colleagues, and usually also by 

project managers and customers. 

     The essential problem in automating FSM code 

generation in software lies with the "Transition Tables" 

which will define, for each FSM, and for each of its 

states, the conditions which could provoke a transition 

to a different state. Although this can appear easy for 

some simple examples, in an embedded system there is 

usually a requirement for many of the transitions to be 
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controlled by quite complex expressions, involving a 

variety of parameters such as limit switch states, fluid 

levels, temperatures, etc. in combination. Without some 

new ideas, these conditions will only be expressed in 

models as comments, and the programmer would have 

to deal with each on an ad-hoc basis.  

    The StateWORKS FSM models essentially handle no 

numerical data: they run in a "Virtual Environment" 

where they only see “Virtual Input” (a set of control 

flags) representing states of other FSMs, states of 

inputs, received messages or commands: transitions are 

triggered by occurrences of various events. Of course, 

real data needs to be processed to provide such "Virtual 

Input" and StateWORKS provides a variety of ways of 

doing that. 

    To give an example, one might be measuring a 

temperature T19 in some process.  Perhaps T19 ought 

to lie within limits 130° to 155°.  The VFSM does not 

know or care about these physical temperature values, 

but only receives state information, in the form of 

"Input Names": T19_LOW,  T19_GOOD,  T19_HIGH,  

T19_ERROR where the last item is caused by a 

detected fault in the measuring device. (These names 

are assigned by the designer, of course.)   

    A powerful feature of the StateWORKS system is 

that expressions governing state transitions, and also 

any expressions governing actions, use such "Input 

Names", combined as appropriate using OR operators, 

AND operators, and brackets. The NOT operator is not 

permitted, because to say that T19 is not in a particular 

state, of its four possible states, has no precise meaning.  

Expressions have no practical limit on complexity. If a 

very complex expression is needed, then one may use 

some additional “Input Names” which are themselves 

derived from sub-expressions, to improve readability. 

    Another important feature of an FSM is the set of 

"Actions" which are triggered by the FSM as it 

operates. These are typically generated when a new 

state is entered, but can also be triggered on exit from a 

specific state. Furthermore, an action might be desired, 

when in a certain state, on detection of a specific pattern 

of inputs. StateWORKS can handle all these 

possibilities. (In other terms, it can express both the 

Moore and Mealy FSM models.) The expressions to 

control such actions are of similar nature to those 

controlling state transitions. 

    Using the StateWORKS development system, a dual-

mode editor permits convenient graphical construction 

of state-transition diagrams, while at the same time full 

details are saved in tables. For each state in the state 

transition diagram a corresponding table can be opened 

for examination or editing. An FSM can be designed in 

this way as a rather abstract entity, and in fact we call 

this a Virtual FSM (VFSM).  A project editor window 

permits each VFSM to be configured to meet the 

requirements of the projects, and linked to the 

input/output, to other VFSMs in the system, and to 

issue commands. One VFSM can be used in many 

instances: for example a movement control VFSM 

might be designed, and used several times in a project. 

Of course, it can also be re-used in other projects, as a 

component  (a new object type if you prefer). 

    We recommend constructing FSM systems in a 

hierarchical way, by which upper-level FSMs have 

knowledge of the states of lower-level FSMs, and can 

issue commands to them. The design tools support this 

scheme, and a diagram of “State Machine Systems” 

organisation is drawn for documentation purposes. 

    Does it work?  Well, the concept has been in use for 

over 12 years, and always very successfully[2,3]. The 

StateWORKS approach involves specifying each FSM 

in total, intimate detail, with no ambiguity or loose ends 

to be patched later. In fact, we prefer to avoid 

generating code to run FSMs, but instead there is a 

"VFSM Executor" program which runs all the FSMs, by 

understanding a cleverly-coded version of the FSM 

specifications. This "executor" program has been 

improved slightly over a 12 year period, and no bugs 

have been encountered in the past few years. It can deal 

with large systems which employ dozens, hundreds, or 

even thousands, of FSMs and is totally reliable. 

     The fact that it has been possible to run software 

for many industrial control systems, various 

instrumentation devices and also 

telecommunications switches by means of a single, 

invariant "VFSM Executor" program, which 

interprets the formal specifications, demonstrates 

that those specifications are totally complete. 

  There are some subtle aspects of this 

technique, for example the use of a defined “execution 

model” which defines how the finite state machines 

should operate, and for which a set of strategies is 

incorporated in the “executor”.  One important point, 

for a general FSM, which will not be noticed for an 

event-driven equivalent, is that after a transition from 

one state to a second state, the inputs may direct an 

immediate transition to a third state. StateWORKS will 

perform the two transitions without a pause, not 

allowing any “input actions” defined for the 

intermediate state to be produced although “entry 

actions” will occur. This point took many months of 

discussion and experiment to settle. All the strategies 

which have been adopted are aimed at ensuring 

completely deterministic and reliable behavior.  

Operation is always identical between the test 

environment and the final run-time environment.  Note 

that, in contrast, programmers writing code based on 

models find themselves building such strategies into the 
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software, sometimes without realising it, and the 

resultant code is liable to occasional failure without any 

obvious cause. Various published proposals for 

generating code from models seem to be at risk in this 

way.  

   There are many other aspects of StateWORKS, such 

as the testing and monitoring facilities, the ability to 

operate over TCP/IP and other networks, and the way in 

which the Real Time Data Base is set up, which are 

outside the scope of this paper. We merely wish to 

remark here that all the diverse practical aspects of 

linking the StateWORKS functions to other parts of the 

system have been dealt with, and that in all cases the 

StateWORKS section provides a useful structure for the 

entire project, so saving a great deal of effort for the 

programmers. 

6. Automatic Code Generation from 

XML Formats.

 If a system is implemented by means of the 

StateWORKS development tools, totally complete and 

tested specifications are generated as the result, and 

these, in principle, could then be coded automatically. 

The point of this paper is to present an engineering 

method for construction of sufficiently complete models 

of system behaviour.  In fact, StateWORKS eliminates 

the need to generate code in the usual sense of the word. 

    The StateWORKS  I.D.E. automatically generates 

XML output files, which contain all the information of 

the models and can be used by any other tools as 

desired. 

    It is normal practice for StateWORKS users to run 

the final system from the models automatically, and in 

that case the XML files, together with the graphics files 

of transition diagrams, are only used for documentation 

purposes. The I.D.E. automatically generates files 

which express the full specification in a special format 

– a sort of intermediate code - for direct execution in a 

target system. This process is more fully described in 

[2] and [3]. It does not generate any conventional 

“code” in a readable format: only the models, in their 

rather abstract format, can be used as documentation or 

for introduction of changes.  

    In a few projects, where it was impossible to use the 

StateWORKS Executor because of lack of time to 

implement a version for the specific operating system in 

use, system development using the StateWORKS I.D.E. 

has proved to be a valuable tool for saving time, and for 

assuring a reliable end product, even though the FSM 

structures had to be “coded by hand”. We do not in fact 

propose any tools for generating code automatically 

from our XML files: we merely assert that this must be 

possible, on account of the completeness of the models, 

and leave the process to others to investigate.  Our 

contention is that such a code-generation step, although 

very common practice in the software industry, is quite 

unnecessary and even dangerous. 

    StateWORKS models are “Platform Independent 

Models” (PIM) and it is not necessary to transform 

them to “Platform-Specific Models” (PSM) in the 

terminology of Model Development Architecture. The 

stage of translation of models into the working system, 

with some sort of tool, is also avoided. In fact, the 

Executor must be re-compiled or otherwise adapted in 

minor ways to any new target environment, but the 

models never change. 

7.  VFSMML  

7.1 Overview

    This section introduces the basic ideas and describes 

the overall design of VFSMML, which is the name 

given to the StateWORKS XML format for VFSM. 

Fuller details and examples may be downloaded from 

[3].  

   The VFSMML mark-up consists of about 27 

elements. To completely describe a VFSM two sections 

are required: a section with definition of virtual input 

and output, and a section which specifies the state 

machine behavior. 

7.2 Virtual input and output 

    The virtual input is a set of values (names) which are 

used in the state machine specification to describe 

behavior conditions, i.e. input actions or transitions. 

The virtual output is a set of values (names) which are 

set by the state machine based on a certain situation, i.e. 

when entering a state, exiting a state or as input actions. 

For instance to represent a simple on/off switch the 

following VFSM can be defined: 

<VFSM>
<Type>switch</Type>
<Object>

<Name>switch1</Name>
</Object>
<IOid>

<Input>
<Name>high</Name>
<Value>1</Name>

</Input>
<Input>
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<Name>low</Name>
<Value>0</Name>

</Input>
</IOid>
<State>

<Name>HIGH</Name>
</State>
<State>

<Name>LOW</Name>
</State>

</VFSM>

    The names “high” and “low” represent the virtual 

input of the switch VFSM. The names “HIGH” and 

“LOW” can be used as its virtual output (the current 

state). One can define state machines, which are 

commonly used, e.g. timer, digital input, digital output 

etc. Those state machines don’t need to be defined in a 

VFSMML specification, as their virtual inputs and 

outputs are well known on the target system. VFSMML 

defines a set of known (predefined) VFSM. To use a 

predefined VFSM, only its object name definition is 

required. 

7.3 State machine behaviour 

   The behavior of a state machine is given by the 

description of its states. Each state can set output values 

(names) based on certain conditions. The conditions are 

logical expressions created out of the input values 

(names). Entering or exiting a state can also be used as 

a condition to set an output value. For each state any 

condition-based transitions can also be specified. To 

support logical expressions to build conditions, 

MathML syntax is used. For instance to specify that the 

following state machine shall change to state “starting 

engine” when the air conditioning is running and the 

start switch is on, the description below can be used: 

<VFSM>
<Type>Engine</Type>
<State>

<Transition>
<Condition>

<apply>
</and>
<ci>airconditioning_runnin

g</ci>
<ci>switch_on</ci>
</apply>

<Condition>
<StateName>

StartingEngine
</StateName>

</Transition>
</State>

</VFSM>

   The input names used for conditions and output 

names used for actions are based on objects defined for 

the given VFSM. For instance the name ”switch_on” 

could be created using the definition given in section 

7.2: 

<VFSM>
<Type>Engine</Type>
<IOid>

<Type>
  switch1 
</Type>
<Input>

<Name>switch_on</Name>
<Value>high</Value>

</Input>
</IOid>
…

</VFSM>

7.4 Example of  VFSMML  

    The XML below corresponds to the state machine of 

Figure 2.

<?xml version="1.0" ?> 
<?xml-stylesheet href="vfsmml.xsl" 

type="text/xsl"?>
<!DOCTYPE vfsmml SYSTEM
  "vfsmml.dtd" > 
<vfsmml>
<VFSM type="vfsm"> 

<Type>VFSM_C</Type>
<Prefix>VFS</Prefix>
<IOid>

<Name>MyCmd</Name>
<Type>CMD-IN</Type>

</IOid>
<IOid>

<Name>Timer</Name>
<Type>TI</Type>
<Input>

<Name>
Timer_done

</Name>
<Value>OVER</Value>

</Input>
<Output>

<Name>
Timer_Re_Start

</Name>
<Value>

ResetStart
</Value>

</Output>
<Output>
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<Name>
Timer_Start

</Name>
<Value>Start</Value>

</Output>
</IOid>
<IOid>

<Name>Lighting</Name>
<Type>DI</Type>
<Input>

<Name>Dark</Name>
<Value>LOW</Value>

</Input>
<Input>

<Name>Light</Name>
<Value>HIGH</Value>

</Input>
</IOid>
<IOid>

<Name>Movement</Name>
<Type>DI</Type>
<Input>

<Name>
Movement_detected

</Name>
<Value>HIGH</Value>

</Input>
</IOid>
<IOid>

<Name>Light</Name>
<Type>DO</Type>

</IOid>
<State>

<Name>OFF</Name>
<Transition>

<Condition>
<apply>
<and/>
<ci>Movement_detected</ci>
<ci>Dark</ci>
</apply>

</Condition>
<StateName>

ON
</StateName>

</Transition>
</State>
<State>

<Name>ON</Name>
<EntryAction>

Timer_Start
</EntryAction>
<InputAction>

<Condition>
<ci>Movement_detected</ci>

</Condition>

<Action>
Timer_Re_Start

</Action>
</InputAction>
<Transition>

<Condition>
<apply>
<or/>
<ci>Timer_done</ci>
<ci>Light</ci>
</apply>

</Condition>
<StateName>

Init
</StateName>

</Transition>
</State>

 </VFSM> 
</vfsmml>

8.   Conclusions 

    A concept has been presented which permits the 

construction of totally complete platform-independent 

models of software system behaviour. We suggest that 

only such a concept can really bridge the present gap 

between the models and the final, reliable 

implementation of working software.  

    We propose an XML representation which is able to 

express the full detail of such models.   

    We deprecate the current obsession with coding as 

the only way to implement software. Although the 

StateWORKS executor is in fact a form of interpreter, 

of an intermediate code expressing the complete 

platform-independent   models   or   specifications,   the  

processing which it undertakes is very efficient and 

compares well with the speed of any alternative coded 

solution.  If  coding of great complexity is avoided, the 

specifications remain as the only form of 

documentation, and remain valid through the life of the 

projects in which they are used. 

    We suggest that the StateWORKS concepts could 

help to fill a gap in the present ideas about UML, and 

provide a path towards “Executable UML”.  In other 

words, if there is ever to be any hope of generating 

software automatically from UML or any other  

specifications, then ways of generating  totally complete 

models from them, in the StateWORKS style, need to 

be developed.  
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    Furthermore, StateWORKS could no doubt be 

applied with advantage to the generation of code for 

“Programmable Logic Controllers” for which current 

techniques are becoming inadequate to implement the 

more complex systems. 

9. References. 

[1] Chris Edwards: “Modelling standard gets ready 

for second round”, IEE “Electronic Systems and 
Software” Oct/Nov 2003. 

[2] F. Wagner, P. Wolstenholme: “Modeling and 

Building Reliable, Re-useable Software” Proc.

10th. IEEE Symposium on Engineering of 
Computer-Based Systems (ECBS’03) Huntsville, 

April 2003. 

[3] See http://www.stateworks.com/papers 

[4] “XTND – XML Transition Network Definition”

W3C Note, Nov. 2000. 

[5] S. J. Mellor, M. J. Balcher: “Executable UML: a 

Foundation for Model-Driven Architecture” 

Addison-Wesley, 2002. 

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04) 
0-7695-2125-8/04 $ 20.00 © 2004 IEEE 




