
Closing the Gap Between Software Modelling and Code

 F. Wagner

Free-lance consultant
ferdinand.wagner@stateworks.com

T. Wagner

Free-lance consultant
thomas.wagner@stateworks.com

P. Wolstenholme

CYDON Technology
p.wolstenholme@computer.org

Abstract

 If a software implementation is to be generated fully

automatically from a model, then the model must be
detailed and totally complete. For the definition of

software implementing system behaviour, through finite

state machines, we propose a well-proven method for
the creation of such models and an associated XML

expression of them.

1. Modelling

Construction of software by means of modelling

techniques is gaining much attention, particularly with

the release of Version 2 of the Unified Modelling

Language (UML 2) and various initiatives in Model-

Driven Architecture (MDA). UML is designed as a top-

down modelling method, which permits large complex

processes and software products to be described in a

standard way and explored by simulation. It has always

been hoped that it could lead to the automatic

production of software: in fact the automatic generation

of program code.

The most difficult area of software for embedded

systems, for telecommunications, and for "reactive

systems" in general is to ensure that the behaviour of

the software in all circumstances is well controlled,

including the presence of unusual combinations of

external stimuli and of errors. This area is best

expressed in terms of finite state machines (FSM),

which are much easier to design, understand, and

discuss than would be the corresponding program code.

UML tools from some vendors make serious

attempts to generate code from such FSM models

expressed as state charts, but there are major

difficulties. Unless all the intimate details are in some

way defined in the model, the code can not be complete,

and in the typical case only "header files" or some

equivalent code skeleton can be produced. This is

inherent in the UML top-down approach to design.

Speaking about UML 1, Cris Kobryn of Telelogic states

that "UML 1 was very inept at taking a large

architecture and chunking it down into sub-systems and

components" [1].

There is hope that UML evolution will improve the

situation, but some serious difficulties remain.

2. Agile Programming.

Proponents of agile methods believe that only the

final code can represent the real software, as a model

can never contain sufficient detail to express exactly

what the code would do. So they tend to discount the

UML process as too heavy and not sufficiently

effective.

The authors of this paper agree, to some extent, with

this view. An initial design of a process and of a

corresponding software system must be done, in terms

of a high-level model. The final implementation needs

to be constructed in a bottom-up sense, where basic,

simple functions are used to make more complex

structures, working up until the complete project is

implemented. This is common practice in software,

where a large library of functions is available to

developers, and they write code procedures or services

around these, testing at each stage, and gradually

building up the entire structure. In established software

development environments the software is normally not

written from scratch but rather in a frame applicable for

standard applications. Commonly-used development

tools (I.D.E., compiler etc.) offer ready-made

frameworks for software development.

Unfortunately, for many applications such as

embedded systems, there is in general no equivalent

library. Also the software development frameworks are

less standard. Some help may be found from the

concept of “software patterns” but these only assist re-

use to a limited extent.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

Administrator
 © Copyright IEEE 2004. (Placed on www.stateworks.com site.) Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective worksfor resale or redistribution to servers or lists, or to re-use any copyrighted component of this work must be obtained from the IEE. Also see notice at foot of page.

3. Totally Complete Models

 If we postulate that a fully-working, well-designed

and quite bug-free code could be a good expression of

the process as defined by the requirements, such code

must express all the information required to run the

application. Could a model contain all the information

implied by that code, but in some other form? Only if

we could construct such a totally complete model, could

we expect to generate the exactly-corresponding code

from it.

 It seems most unlikely that UML can be used to

generate such models, without introducing some new

ideas.

 So what ideas can be put forward? Over the past 13

years, work has been progressing on a suitable format

for expressing behaviour of complex software as

systems of FSMs. This has culminated in the

development of a tool which we call StateWORKS

[2][3], described in section 5 below and which indeed

facilitates the creation of totally complete models, from

which software is automatically generated.

Figure 1: Generic Finite State Machine

4. Finite State Machine

Misunderstandings

The topic of finite state machines in software has

attracted a number of misconceptions over the half

century since the FSM concept was intensively studied

in relation to hardware and other general systems.

Regrettably, in software design this has caused many

practitioners to conclude that the FSM concept is

difficult to apply to real projects. Some remarks aimed

at correcting this erroneous impression follow. Figure 1

shows the generic FSM, whose state sequencing

depends on the inputs and also on the history of those

inputs as evidenced in the state.

Many students are introduced to the FSM in

software only in the context of the parsing of regular

expressions, or in general, text streams. The FSM used

for this purpose is a specialised subset of the general

case, and is often “deterministic” in that it operates to

produce a result, and then ceases processing the input.

Furthermore, the input is a character stream, which is a

very limited form of FSM input. Based on this case, one

is easily led to conclude that a transition table is a very

straightforward affair, and that it would be easily to use

it as a basic for automatic code generation. But in a

typical control-system application, the transition table

for a FSM needs to take account of a much larger

number and variety of inputs, often requiring several

variables to be combined in expressions, and to process

this table for automatic code generation, in a general

way, becomes a nightmare.

The typical software-textbook definition of the

FSM omits to mention “actions” which, in control

systems, need to be generated at various stages in the

operation of the FSM; for instance on entering a

specific state. Yet the classical theoretical studies of

FSM models explain the “Moore Model” and Mealy

Model” of FSM output, which were studied half a

century ago: these concepts seem irrelevant to many

software practitioners. In some cases they are unknown:

one published proposal to the W3C group [4] takes an

oversimplified FSM as a basis, and elaborates on this to

produce the new concept of “transition networks”

which are nothing more than the classical FSM as

understood by many hardware designers

 It is obvious that an FSM operates as a result of

various changes to its input, and this leads to the

assumption that an FSM is “event driven” – which is in

a sense true. But the concept should not be taken too

far, for control systems, although it is valid for the text

parsing examples often encountered by programmers.

Published proposals for generating code for FSMs [5]

have included schemes in which each incoming event is

“consumed” by the FSM as it operates. An event which

Output

conditions

State

transition

conditions

State

Inputs

Outputs

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

does not cause a transition is discarded in these

schemes, and this leads to a need to store events which

might be needed in future, by ensuring that they always

cause a transition to a new state. With this scheme, the

number of states required for even a moderately

complex process becomes prohibitively large, and

the FSM impossible to grasp intuitively. We stress

that an FSM must have access to all the inputs

which will determine its transitions, at the instant

when any transition expression is being evaluated.

 To take an example of this point, consider an out-

door security lamp. This should light when

movement is detected, and remain lit for, say, 40

seconds after movement ceases. But it should not

light in daylight, so it incorporates a sensor of the

ambient light level. Using a classical FSM model,

we need just two states, the initial OFF state and the

ON state (Figure 2). The lamp controller passes to

ON when movement is detected, but only when the

ambient light level is low. An entry action to the

ON state starts a timer, and an “input action” re-

starts the timer whenever movement is detected. The

transition to the OFF state occurs when the timer

reaches the time-out delay, and perhaps also when the

ambient light level has increased.

Movement_detected & Dark

Init

1

Timer_done | Light

ON

2

E:

I:

Figure 2: Lamp Control by Classical Finite State
Machine

 Now consider the equivalent state transition diagram

for a purely event-driven version (Figure 3). It requires

4 states and 7 transitions! Of course, in practice there

are ways around the problem, by means of “guarded

transitions” but these are in fact a dilution of the event-

driven principle.

 Many text books, and some published schemes for

generating code, seem only to consider a single FSM. In

real control systems, and in telecommunications

systems, it is usually essential to split the system into a

number of FSMs, all coordinated in some way, as

otherwise a single FSM becomes far too complicated to

understand. Error conditions need to be handled in real

life, and these are another cause of growth of the

number of states: a process which seems easily

expressed as a single FSM, when first designed for the

case when everything works, might require three or

more FSMs to provide a totally safe and reliable

implementation. A well thought-out strategy for

dealing with large numbers of concurrent FSMs in a

single system is required.

Figure 3: Lamp Control by Purely-Event-Driven
Finite State Machine

 A practical, but non-trivial problem is that it can be

hard to display all the details pertaining to an FSM on

the “transition diagram” which is a popular design tool.

 All of the difficulties outlined above can be

overcome, quite simply, but only with the aid of a few

important concepts such as those developed for

StateWORKS.

5. The StateWORKS Approach

 This approach is based on a separation between data

manipulation and system behaviour, and is devoted to

the development of totally precise FSM models, which

can then be used with no need to generate code by hand.

These models control the behaviour of the software,

which is expressed as a set of FSMs, preferably

arranged in a hierarchy. Each FSM is sufficiently

simple to be examined, understood and discussed by

designers and their colleagues, and usually also by

project managers and customers.

 The essential problem in automating FSM code

generation in software lies with the "Transition Tables"

which will define, for each FSM, and for each of its

states, the conditions which could provoke a transition

to a different state. Although this can appear easy for

some simple examples, in an embedded system there is

usually a requirement for many of the transitions to be

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

controlled by quite complex expressions, involving a

variety of parameters such as limit switch states, fluid

levels, temperatures, etc. in combination. Without some

new ideas, these conditions will only be expressed in

models as comments, and the programmer would have

to deal with each on an ad-hoc basis.

 The StateWORKS FSM models essentially handle no

numerical data: they run in a "Virtual Environment"

where they only see “Virtual Input” (a set of control

flags) representing states of other FSMs, states of

inputs, received messages or commands: transitions are

triggered by occurrences of various events. Of course,

real data needs to be processed to provide such "Virtual

Input" and StateWORKS provides a variety of ways of

doing that.

 To give an example, one might be measuring a

temperature T19 in some process. Perhaps T19 ought

to lie within limits 130° to 155°. The VFSM does not

know or care about these physical temperature values,

but only receives state information, in the form of

"Input Names": T19_LOW, T19_GOOD, T19_HIGH,

T19_ERROR where the last item is caused by a

detected fault in the measuring device. (These names

are assigned by the designer, of course.)

 A powerful feature of the StateWORKS system is

that expressions governing state transitions, and also

any expressions governing actions, use such "Input

Names", combined as appropriate using OR operators,

AND operators, and brackets. The NOT operator is not

permitted, because to say that T19 is not in a particular

state, of its four possible states, has no precise meaning.

Expressions have no practical limit on complexity. If a

very complex expression is needed, then one may use

some additional “Input Names” which are themselves

derived from sub-expressions, to improve readability.

 Another important feature of an FSM is the set of

"Actions" which are triggered by the FSM as it

operates. These are typically generated when a new

state is entered, but can also be triggered on exit from a

specific state. Furthermore, an action might be desired,

when in a certain state, on detection of a specific pattern

of inputs. StateWORKS can handle all these

possibilities. (In other terms, it can express both the

Moore and Mealy FSM models.) The expressions to

control such actions are of similar nature to those

controlling state transitions.

 Using the StateWORKS development system, a dual-

mode editor permits convenient graphical construction

of state-transition diagrams, while at the same time full

details are saved in tables. For each state in the state

transition diagram a corresponding table can be opened

for examination or editing. An FSM can be designed in

this way as a rather abstract entity, and in fact we call

this a Virtual FSM (VFSM). A project editor window

permits each VFSM to be configured to meet the

requirements of the projects, and linked to the

input/output, to other VFSMs in the system, and to

issue commands. One VFSM can be used in many

instances: for example a movement control VFSM

might be designed, and used several times in a project.

Of course, it can also be re-used in other projects, as a

component (a new object type if you prefer).

 We recommend constructing FSM systems in a

hierarchical way, by which upper-level FSMs have

knowledge of the states of lower-level FSMs, and can

issue commands to them. The design tools support this

scheme, and a diagram of “State Machine Systems”

organisation is drawn for documentation purposes.

 Does it work? Well, the concept has been in use for

over 12 years, and always very successfully[2,3]. The

StateWORKS approach involves specifying each FSM

in total, intimate detail, with no ambiguity or loose ends

to be patched later. In fact, we prefer to avoid

generating code to run FSMs, but instead there is a

"VFSM Executor" program which runs all the FSMs, by

understanding a cleverly-coded version of the FSM

specifications. This "executor" program has been

improved slightly over a 12 year period, and no bugs

have been encountered in the past few years. It can deal

with large systems which employ dozens, hundreds, or

even thousands, of FSMs and is totally reliable.

 The fact that it has been possible to run software

for many industrial control systems, various

instrumentation devices and also

telecommunications switches by means of a single,

invariant "VFSM Executor" program, which

interprets the formal specifications, demonstrates

that those specifications are totally complete.

 There are some subtle aspects of this

technique, for example the use of a defined “execution

model” which defines how the finite state machines

should operate, and for which a set of strategies is

incorporated in the “executor”. One important point,

for a general FSM, which will not be noticed for an

event-driven equivalent, is that after a transition from

one state to a second state, the inputs may direct an

immediate transition to a third state. StateWORKS will

perform the two transitions without a pause, not

allowing any “input actions” defined for the

intermediate state to be produced although “entry

actions” will occur. This point took many months of

discussion and experiment to settle. All the strategies

which have been adopted are aimed at ensuring

completely deterministic and reliable behavior.

Operation is always identical between the test

environment and the final run-time environment. Note

that, in contrast, programmers writing code based on

models find themselves building such strategies into the

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

software, sometimes without realising it, and the

resultant code is liable to occasional failure without any

obvious cause. Various published proposals for

generating code from models seem to be at risk in this

way.

 There are many other aspects of StateWORKS, such

as the testing and monitoring facilities, the ability to

operate over TCP/IP and other networks, and the way in

which the Real Time Data Base is set up, which are

outside the scope of this paper. We merely wish to

remark here that all the diverse practical aspects of

linking the StateWORKS functions to other parts of the

system have been dealt with, and that in all cases the

StateWORKS section provides a useful structure for the

entire project, so saving a great deal of effort for the

programmers.

6. Automatic Code Generation from

XML Formats.

 If a system is implemented by means of the

StateWORKS development tools, totally complete and

tested specifications are generated as the result, and

these, in principle, could then be coded automatically.

The point of this paper is to present an engineering

method for construction of sufficiently complete models

of system behaviour. In fact, StateWORKS eliminates

the need to generate code in the usual sense of the word.

 The StateWORKS I.D.E. automatically generates

XML output files, which contain all the information of

the models and can be used by any other tools as

desired.

 It is normal practice for StateWORKS users to run

the final system from the models automatically, and in

that case the XML files, together with the graphics files

of transition diagrams, are only used for documentation

purposes. The I.D.E. automatically generates files

which express the full specification in a special format

– a sort of intermediate code - for direct execution in a

target system. This process is more fully described in

[2] and [3]. It does not generate any conventional

“code” in a readable format: only the models, in their

rather abstract format, can be used as documentation or

for introduction of changes.

 In a few projects, where it was impossible to use the

StateWORKS Executor because of lack of time to

implement a version for the specific operating system in

use, system development using the StateWORKS I.D.E.

has proved to be a valuable tool for saving time, and for

assuring a reliable end product, even though the FSM

structures had to be “coded by hand”. We do not in fact

propose any tools for generating code automatically

from our XML files: we merely assert that this must be

possible, on account of the completeness of the models,

and leave the process to others to investigate. Our

contention is that such a code-generation step, although

very common practice in the software industry, is quite

unnecessary and even dangerous.

 StateWORKS models are “Platform Independent

Models” (PIM) and it is not necessary to transform

them to “Platform-Specific Models” (PSM) in the

terminology of Model Development Architecture. The

stage of translation of models into the working system,

with some sort of tool, is also avoided. In fact, the

Executor must be re-compiled or otherwise adapted in

minor ways to any new target environment, but the

models never change.

7. VFSMML

7.1 Overview

 This section introduces the basic ideas and describes

the overall design of VFSMML, which is the name

given to the StateWORKS XML format for VFSM.

Fuller details and examples may be downloaded from

[3].

 The VFSMML mark-up consists of about 27

elements. To completely describe a VFSM two sections

are required: a section with definition of virtual input

and output, and a section which specifies the state

machine behavior.

7.2 Virtual input and output

 The virtual input is a set of values (names) which are

used in the state machine specification to describe

behavior conditions, i.e. input actions or transitions.

The virtual output is a set of values (names) which are

set by the state machine based on a certain situation, i.e.

when entering a state, exiting a state or as input actions.

For instance to represent a simple on/off switch the

following VFSM can be defined:

<VFSM>
<Type>switch</Type>
<Object>

<Name>switch1</Name>
</Object>
<IOid>

<Input>
<Name>high</Name>
<Value>1</Name>

</Input>
<Input>

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

<Name>low</Name>
<Value>0</Name>

</Input>
</IOid>
<State>

<Name>HIGH</Name>
</State>
<State>

<Name>LOW</Name>
</State>

</VFSM>

 The names “high” and “low” represent the virtual

input of the switch VFSM. The names “HIGH” and

“LOW” can be used as its virtual output (the current

state). One can define state machines, which are

commonly used, e.g. timer, digital input, digital output

etc. Those state machines don’t need to be defined in a

VFSMML specification, as their virtual inputs and

outputs are well known on the target system. VFSMML

defines a set of known (predefined) VFSM. To use a

predefined VFSM, only its object name definition is

required.

7.3 State machine behaviour

 The behavior of a state machine is given by the

description of its states. Each state can set output values

(names) based on certain conditions. The conditions are

logical expressions created out of the input values

(names). Entering or exiting a state can also be used as

a condition to set an output value. For each state any

condition-based transitions can also be specified. To

support logical expressions to build conditions,

MathML syntax is used. For instance to specify that the

following state machine shall change to state “starting

engine” when the air conditioning is running and the

start switch is on, the description below can be used:

<VFSM>
<Type>Engine</Type>
<State>

<Transition>
<Condition>

<apply>
</and>
<ci>airconditioning_runnin

g</ci>
<ci>switch_on</ci>
</apply>

<Condition>
<StateName>

StartingEngine
</StateName>

</Transition>
</State>

</VFSM>

 The input names used for conditions and output

names used for actions are based on objects defined for

the given VFSM. For instance the name ”switch_on”

could be created using the definition given in section

7.2:

<VFSM>
<Type>Engine</Type>
<IOid>

<Type>
 switch1
</Type>
<Input>

<Name>switch_on</Name>
<Value>high</Value>

</Input>
</IOid>
…

</VFSM>

7.4 Example of VFSMML

 The XML below corresponds to the state machine of

Figure 2.

<?xml version="1.0" ?>
<?xml-stylesheet href="vfsmml.xsl"

type="text/xsl"?>
<!DOCTYPE vfsmml SYSTEM
 "vfsmml.dtd" >
<vfsmml>
<VFSM type="vfsm">

<Type>VFSM_C</Type>
<Prefix>VFS</Prefix>
<IOid>

<Name>MyCmd</Name>
<Type>CMD-IN</Type>

</IOid>
<IOid>

<Name>Timer</Name>
<Type>TI</Type>
<Input>

<Name>
Timer_done

</Name>
<Value>OVER</Value>

</Input>
<Output>

<Name>
Timer_Re_Start

</Name>
<Value>

ResetStart
</Value>

</Output>
<Output>

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

<Name>
Timer_Start

</Name>
<Value>Start</Value>

</Output>
</IOid>
<IOid>

<Name>Lighting</Name>
<Type>DI</Type>
<Input>

<Name>Dark</Name>
<Value>LOW</Value>

</Input>
<Input>

<Name>Light</Name>
<Value>HIGH</Value>

</Input>
</IOid>
<IOid>

<Name>Movement</Name>
<Type>DI</Type>
<Input>

<Name>
Movement_detected

</Name>
<Value>HIGH</Value>

</Input>
</IOid>
<IOid>

<Name>Light</Name>
<Type>DO</Type>

</IOid>
<State>

<Name>OFF</Name>
<Transition>

<Condition>
<apply>
<and/>
<ci>Movement_detected</ci>
<ci>Dark</ci>
</apply>

</Condition>
<StateName>

ON
</StateName>

</Transition>
</State>
<State>

<Name>ON</Name>
<EntryAction>

Timer_Start
</EntryAction>
<InputAction>

<Condition>
<ci>Movement_detected</ci>

</Condition>

<Action>
Timer_Re_Start

</Action>
</InputAction>
<Transition>

<Condition>
<apply>
<or/>
<ci>Timer_done</ci>
<ci>Light</ci>
</apply>

</Condition>
<StateName>

Init
</StateName>

</Transition>
</State>

 </VFSM>
</vfsmml>

8. Conclusions

 A concept has been presented which permits the

construction of totally complete platform-independent

models of software system behaviour. We suggest that

only such a concept can really bridge the present gap

between the models and the final, reliable

implementation of working software.

 We propose an XML representation which is able to

express the full detail of such models.

 We deprecate the current obsession with coding as

the only way to implement software. Although the

StateWORKS executor is in fact a form of interpreter,

of an intermediate code expressing the complete

platform-independent models or specifications, the

processing which it undertakes is very efficient and

compares well with the speed of any alternative coded

solution. If coding of great complexity is avoided, the

specifications remain as the only form of

documentation, and remain valid through the life of the

projects in which they are used.

 We suggest that the StateWORKS concepts could

help to fill a gap in the present ideas about UML, and

provide a path towards “Executable UML”. In other

words, if there is ever to be any hope of generating

software automatically from UML or any other

specifications, then ways of generating totally complete

models from them, in the StateWORKS style, need to

be developed.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

 Furthermore, StateWORKS could no doubt be

applied with advantage to the generation of code for

“Programmable Logic Controllers” for which current

techniques are becoming inadequate to implement the

more complex systems.

9. References.

[1] Chris Edwards: “Modelling standard gets ready

for second round”, IEE “Electronic Systems and
Software” Oct/Nov 2003.

[2] F. Wagner, P. Wolstenholme: “Modeling and

Building Reliable, Re-useable Software” Proc.

10th. IEEE Symposium on Engineering of
Computer-Based Systems (ECBS’03) Huntsville,

April 2003.

[3] See http://www.stateworks.com/papers

[4] “XTND – XML Transition Network Definition”

W3C Note, Nov. 2000.

[5] S. J. Mellor, M. J. Balcher: “Executable UML: a

Foundation for Model-Driven Architecture”

Addison-Wesley, 2002.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

