
F. Wagner February 2005

A flowchart is not a state machine

Introduction
There are several methods, models and tools used to describe control systems. Some examples

are: state machines, Petri nets, Statecharts, flowcharts. Though they describe the same problems
they are not the same thing. Because the state machines are the oldest concept all methods
describing sequential systems are sometimes categorizes as being equivalent to state machines. This
is an obvious misunderstanding which I would like to discuss further, discussing a flowchart as a
counterpart of a state machine. 

Flowchart
A flowchart is a visual means to show a sequence of some activities. It shows the sequence

depending on conditions. Because the wording: sequence, activities and dependencies remind one of
similar terms in state machines, flowcharts are sometimes mixed up with state machines. In other
words some people do not see the true difference between the two. The confusion starts with the
missing understanding of a state which is not known in a flowcharts. To make the matter clear let's
first show a simple example.

Flowcharts use a few basic symbols shown in Figure 1.

Figure 1 Flow chart symbols: a). Start and End; b). Activity; c) Decision; d). Place
marker (to show links between two places of a flowchart)

Those symbols will suffice for our example as they are enough for most applications.
Interestingly, the graphical tool most often used to produce the flowchart offers 26 symbols plus 44
borders and title types (and probably also the possibility to invent user's own specific symbols
which I have not investigated). It is an interesting example of fascination with graphics. We can
understand a graphical representation if we understand the symbol used. Who is able to know the
meaning of 26 symbols supported by 44 boarders and titles types? Nobody, therefore we use only a
part of them. If a reader of our drawing knows another part of the symbols he will not understand
our drawing. More does not mean always better.

Example
But let's come to our example. We would like to make a flowchart describing the Security lamp

control. The lamp should light when movement is detected, and remain lit for, say, 10 seconds after
movement ceases. But it should not light in daylight, so it incorporates a sensor of the ambient light
level. Using a classical FSM model, we need just two states, the initial Off state and the On state
(see Figure 2 through Figure 4). The lamp controller passes to On when movement is detected, but
only when the ambient light level is low. An entry action in the On state switches on the lamp, starts



F. Wagner February 2005

a timer and an “input action” re-starts the timer whenever movement is detected. The transition to
the Off state occurs when the timer reaches the time-out delay, and also when the ambient light level
has increased. The entry action in the state Off switches off the lamp.

Figure 2 Security lamp: state transition diagram

Figure 3 Security lamp: State transition table of the state Off

Figure 4 Security lamp: State transition table of the state On

A flowchart that describes the lamp control is shown in Figure 5. The flowchart shows step by
step the control sequence: the tested condition and the task to be done depending on the test result.
We assume that the sequence has to be repeated endlessly that is reaching the end we have to start it
again from the Begin (therefore we do without the End symbol). Though a flowchart is intended for
sequences which have clear beginnings and ends, nothing can stop us to use it as we have done in
our example. Imagine that we do not like the double existence of “Light?” and “Move?” decision
symbols. In other word we would like to have the flowchart more compact.



F. Wagner February 2005

.

Figure 5 Flowchart of the Security lamp control

 

If we wanted to merge the checks we have to distinguish between the beginning (when the lamp
is off) and the situation when the lamp is already on. Then we could decide about timeout checks
and actions to be done, in other words we need a concept of a state. We could do it introducing a
variable which will represent a state but than it is not a flowchart anymore but an invention with the
same (dubious) value as markers and flags in coded control systems. But we do it and the result is
shown in Figure 6. We assumed in the second solution that switching on already lighting lamp is not
a problem and we use a flag timRun to store the information that the lamp is on. If we could get the
information from the timer it would be ok but if it is not possible we use a flag and this is a
problem. Now imagine that we want to describe not this trivial security lamp problem but some
more complex control task where we need several flags (hidden states). Then we end with tens or
hundreds flags and we loose our time (and company money) in endless discussion why certain flags
have or have not a given value. A flowchart reflects a common practise by coding where flags store
information about the past changes of inputs and used resources, like for instance timers.

In a state machine a state represents the information about the past; if the state machine is for
instance in a state On we have complete knowledge about the situation: the lamp is on and the time



F. Wagner February 2005

runs. If we look at a certain point in a flow the situation is not clear defined – we have to know the
state of all flags to determine the situation; the flags correspond effectively to a coded state.

Figure 6 Flowchart of the Security lamp control: solution with a flag

What is a flowchart for?
Flowcharts were initially introduced to describe program flow. An assembler program was really

difficult to read, even if well commented. Hence, a flowchart presentation was a help. Even for high
level programming languages it may make sense to describe some program parts in certain
situations by means of flowcharts. But also in that case we have to note that they are not a means to
describe a program completely. They are a way of getting started, or for documentation, or to
explain some concept to the students. We cannot expect that a programmer draws a fully detailed
flowchart of a major program before coding it or vice-versa that he prepares a flowchart of a coded
program. We are speaking of course about software consisting of more than 1 or 2 pages of code.
We may do it for a procedure but can we imagine thousands of pages of flowchart with cross
references between pages? A flowchart belongs to innumerable means that fake the reality: as if you
can really do something serious with it. In fact, many things in software seems to be treated in that
way: to have some value for special occasions (presentations) but in the end only code counts.

Obviously a flowchart is a convenient means. Everybody understands it without any training and
it can be drawn without any formal restriction. In other words it is a good tool for informal
discussions. It is rather an illusion to expect more. Of course, according to my thesis about overuse
expressed in the accompanying newsletter1, there are groups that exploit the concept over any
imaginable extend. The procedure is always the same: one intends to use flowchart for some
relatively simple tasks and after a while we have a uncontrollable monster and nobody knows how

1 In the Newsletter 1-05 I wrote: We tend to overuse things that we have learned...



F. Wagner February 2005

get out of it.

The flowchart concept was a very fruitful idea and can be met in several situations adjusted to the
specific needs. Though it lost its common use in code presentations where it has been replaced by a
Program Structure Diagram (called also NS diagram from the authors' names: Nassi-Shneidermann)
it obviously influences other methods. For instance the Specification and Design Language (SDL) is
based on a state machine concept but each state is actually described by a flowchart. Another
example is the Unified Modelling Language (UML) where the flowchart is used under the name
Activity Diagram.

Sometimes diagrams are drawn which are combinations of flow charts, Petri nets and state
transition diagrams, the IEC 61131-3 Sequential Flow Chart being typical in this respect, and these
can be very helpful in documenting intentions, but such unholy combinations can be dangerous to
use as they discard any theoretical rigour of their various concepts, and they should only be
employed for quite simple projects: never for a project which might need to employ tens or more of
finite state machines in a structure.

Conclusions
In summary a flowchart can be used to describe a sequence of conditional activities. For certain

tasks it is a good tool, for instance to present: a product line, an organization, an intention; in
general something that we want to do and we want to explain it to other persons. It is less well
qualified to show continuously running sequential activities. The missing concept of state must be
then replaced by explicit realisation of all imaginable control paths, which does not make sense
except for simple examples in text books. By introducing flags to store the past a flowchart becomes
more compact but looses its simplicity and opens the door to dubious inventions which make more
harm than good. Hence, descriptions of control problems with flowcharts are possible but the results
are much too complex. 

And of course, a flowchart describing a sequence of activities is still a flowchart and not a state
machine.


