
F. Wagner August 2009

Calculator

Introduction
This case study is an introduction to making a specification with StateWORKS Studio that will

be executed by an RTDB based application. The calculator known from Microsoft Windows
systems is taken as the application. Although the power of the StateWORKS concept only shows up
significantly in larger projects with many state machines, this case study, with a single state
machine, raises a number of interesting issues, common to all StateWORKS projects. A discussion
of issues relevant to this project may be found on the StateWORKS blog, at www.stateworks.net.

The case study gives also an example of using the complement value. We will learn also that
StateWORKS has a RtdbClient for C# programs.

Requirements
The calculator has the following keys: 0..9, ., +, -, *, /, ±, =, C, CE and 1-operand keys: 1/x, x2,

sqrt. In any situation the calculator has to produce a correct result defined by the well known
arithmetic rules. If the calculations is impossible the calculator has to display information helping
the user to resolve the erroneous situation, like:

• On encountering a division by 0 the display should read "Cannot divide by 0" and typing the
key “C” should reset the calculator.

• On calculating the square root value of a negative operand the display should read "Wrong
operand".

• On erroneous operand or operation keys the display should read “Reset (C) to continue” or
“Clear (CE) to continue” as appropriate.

Of course, any situation can be cleared using the main reset key “C”.

Design

The calculator control system
Before we start to think about a calculator state machine we should make a design of the

calculator control system.

We may consider a calculator control as a system that reacts to keys performing all elementary
actions. This approach is a dead end street leading to a very complex state machine that is difficult
to handle.

 We will define another way that is based on the observation that a calculator is a builder of
strings that are executed when complete. The rules for handling such a calculator system are fairly
simple:

• Parse the incoming keys and assign them to the appropriate control value.

• Complete an Expression string from incoming keys.

• Perform a calculation defined by the Expression string according to arithmetic rules, when

1/12

encountering operator keys +, -, *, / as well as the Equals key =. We notice that we need
several calculation functions as the the rule for a calculation after Equals key and addition
and subtraction operators are different than for multiplication and division operators.

The RTDB based control
As we are going to define a calculator control realized by a StateWORKS run-time system, and

in fact implemented by defining the specification we have to take into account the RTDB objects
used. The objects have specific control features that are used by the specification [1]. We will use
only two types of objects: DAT and OFUN.

The functioning of an object DAT is described by the state transition diagram in Figure 1. After
start-up a DAT object is in the state UNDEF. The first data change forces it to go to the state
CHANGED. If the DAT state is used (consumed) by another object, it goes to the state DEF.
Effectively, it loops between the states DEF and CHANGED: any data changes forces it to go to the
state CHANGED and if this event is used by another object it returns to the state DEF.

The object OFUN is an interface for user-written functions. It is an input/output object, i.e. it is
controlled by actions and generates control values. An action is an integer number that is passed to
the called function as a parameter. The control values are integer numbers – return values of the
called function.

As the control problem has been defined as string processing we will use objects of type DAT for
storing strings. The objects of type OFUN will be used to call Output Functions. The Output
Functions will access the object DAT to do the actual data processing. Therefore they are specified
in an I/O Unit used by programming the Output Functions.

So, we have to design a system which recognizes incoming keys, builds a syntactically correct
Expression string and performs arithmetic operations if they are due. The task of the state machine
is to call appropriate functions and handle erroneous situations caused by unexpected keys or
calculation errors.

According to StateWORKS design philosophy we are going to specify a state machine that
performs the control flow. The data flow will be realized by specific Output Functions: we will use
parsers to do the job of constructing the operands as well as doing the calculations.

2/12

Figure 1: DAT state transition diagram

RTDB objects required
Before we continue we should decide what objects are required for the Calculator control. In this

moment we see the following DAT objects:

• Key to store the entered keys

• Expression to store the Expression string to be processed

• Display to show the entered keys and the calculation result

• Result to store the last result (due to its double function Display cannot store the result)

For specifying the state machine we need also objects of type OFUN that are the software
interface to the Output Function. We need several functions shown in Table 2. Instead of providing
an OFUN object for each function we define only two of them which we call:

• Ofu_Parse

• Ofu_Calculate
Later we will add another OFUN object:

• Ofu_Expression
Each Output Function receives a parameter (the value of the Output name) which is used to

select the called function.

Control values
The specification of the state machine requires a definition of control (input) values and output

values. Analyzing the possible impact on the control we distinguish a few groups of keys that define
the control values in Table 1. Any key in a group has the same impact on the state machine
behavior. For instance, typing the key + has the same effect as typing the key -. Similarly, typing the
key sqrt has the same effect as typing the 1/x. We discuss behavior and not the calculation result.
The called function knows the specific key typed and performs the calculation taking into account
that key.

As we use the DAT data type for storing the Key value a change of the object Key value is
represented by the control value Key_CHANGED which activates the output MatchKey calling the
function Parse (see the object Ofu_Parse) with the parameter 1. The function Parse returns a value
identifying the key.

The functions Calculate (see the object Ofu_Calculate) returns a value indicating whether the
calculation has been successful or failed.

The functions ExpressionCheck (see the object Ofu_Expression) returns a value indicating
whether the Expression is empty.

Appendix 1 shows the declarations of the Output Functions which will need to be programmed.

Parsing the key
The task of the state machine will be to supervise the keys typed at any time. First, the state

machine decides whether the entered key make sense in a given situation. If unexpected the key
may be ignored or should produce an info on the display. If the key is expected the state machine
should decide what to do at that moment. The decision is very coarse; its is not the task of the state
machine to decide which arithmetic operation to do. Output Functions return a value that

3/12

corresponds to the result and this value is used by the state machine as a control value to supervise
the calculation process.

The key role in the state machine execution will play the object Key which change will trigger
the function MatchKey via the Output Function Parse. This function will return the control value
Key_CHANGED (see Table 1). Any key change will trigger an action that will also clear the key;
this is necessary to allow a repetition of the same key. Clearing the key will generate another
Key_CHANGED control value but this time the function Parse will return an acknowledgment
signal AckMatched which actually means “the key is an empty string”. AckMatched plays an
important role in a specification, being used to terminate transitions.

Output names
The Output names define the functions (see Table 2) that are to be called as Input-, Entry- or Exit-
Actions. All objects used are strings; hence the functions are parsers analyzing strings and
transforming them only locally to float numbers for calculations. The functions are called using
Output Functions Parse and Calculate. Later we will add another Output Function called
Expression. An Output Function gets a parameter (Output name) which defines the specific function

4/12

Table 1: Control values

Meaning Keys Object Control value
Key change Key Key_CHANGED

Digit 0-9, . Ofu_Parse DigitMatched

AddSub +, - Ofu_Parse AddSubMatched

MulDiv *, / Ofu_Parse MulDivMatched

Equals = Ofu_Parse EqualsMatched

Sign ± Ofu_Parse SignMatched

Backspace Backspace Ofu_Parse Backspace

1Op 1/x, %, sqrt Ofu_Parse 1OpMatched

Clear CE Ofu_Parse ClearMatched

Reset C Ofu_Parse ResetMatched

No key (empty) Ofu_Parse AckMatched

Calculation ok Ofu_Calculate Ok

Calculation error Ofu_Calculate Error

Expression is empty Ofu_Expression ExprEmpty

Expression is not empty Ofu_Expression ExprNotEmpty

to be called by the Output Function. So, for instance getting the parameter 7 the Output Function
Calculate will carry out a specific function AddToNumber().

Building operands
Typing a Digit key should activate a function AddToNumber that creates the operand. The function
creates a string from the digits and a dot character. The string must have not more than one dot, no
trailing zeros and a leading zero must be added if the first entered key is a dot.

Calculating operations
The function that performs arithmetic operations: +, -, *, / is a more complex one. To start with,

we define two such functions: CalculateAll and CalculateLast that are results of the following
observations: clicking on a key that triggers an arithmetic operation (+, -, *, /, =) the function called
gets a few possible strings that are illustrated by examples shown in Table 3.

The strings that are at any time to be processed require maximum none, one or two operations,
whereas +, -, = may trigger up to two operations and *, / may trigger max one operation. In
principle, the function CalculateAll will be called if the keys +,-,= are used and the CalculateLast
will be triggered by keys * or /.

The other functions are straightforward ones like: ClearDisplay or ChangeSign; their names

5/12

Table 2: Output Functions

Function defined by
Output name

OFUN Parameter

Triggered by
 +,-,*,/,= keys

MatchKey Ofu_Parse 1
AddToNumber Ofu_Calculate 7
CalculateLast Ofu_Calculate 6
CalculateAll Ofu_Calculate 5
CalculateT Ofu_Calculate 10

Triggered by
other keys

ChangeSign Ofu_Calculate 9
DeleteLastDigit Ofu_Calculate 8
Calculate1Op Ofu_Calculate 12
Reset Ofu_Calculate 15
Clear Ofu_Calculate 13

Auxiliary DisplayResetMsg Ofu_Calculate 4
DisplayClearMsg Ofu_Calculate 3
ChangeOperation Ofu_Calculate 14
ClearDisplay Ofu_Parse 2
PrepareExpressionT Ofu_Parse 3
CheckExpression Ofu_Expression 1

define quite well their simple functionality.

Understanding the rules of operations that are to be carried out in the calculator we are able to
start the specification of the calculator state machine that we have called Calculator.

State machine specification
We begin with a simple calculator with functionality limited to the four arithmetic functions

represented by the keys +,-,*,/. In next stages we shall expand it to a standard calculator
corresponding more or less to the Windows one. But we improve on it, by adopting the normal
operator precedence rules for arithmetic expressions, as in fact in the “scientific” mode of the
Windows calculator. The projects should be opened in a StateWORKS development environment so
as to see all the project details.

Simple calculator
The state machine CalculatorSimple is shown in Figure 2. The calculation is triggered by a

change of the object Key. As this event should trigger the state machine in any state we put it in the
Always section (see Figure 3). The discussion below refers to the specification details in the
document Calculator.xml (note that this document applies to the full Standard calculator).

The Calculator has many Actions. Assuming that each action will be an Entry Action of a state
the state machine will have a lot of states. Using the Mealy model we will as a rule need fewer
states. We try to optimize the design using a mixed Mealy-Moore model. As a rule, the state
machine is designed in such a way that an event triggers an Input Action in the present state and
forces a transition to another state. The other state is a busy state whose function is to acknowledge
the realization of the calculation function (see the discussion in the section “Parsing the key“). This
acknowledgment is ANDed with the calculation result which determines the next done state. So, for
instance if a digit key is entered (DigitMatched) in the state Init the Input Action ClearDisplay is

6/12

Table 3: Examples of basic calculations

String Calculation Number of operations

2.3+ do nothing none

2.3+4.07* do nothing none

2.3+4.07+ add and continue with 6.37+ one

2.3+4.07= add and terminate (result 6.37) one

2.3+4.07*2* multiply and continue with 2.3+8,14* one

2.3+4.07*2+ multiply and add and continue with 10.44+ two

2.3+4.07*2= multiply and add and terminate (result 10.44) two

performed and the state machine goes to the state AddToNumber where the Entry Action
AddToNumber is performed. The end of the calculation forces the transition to the state Number.

Several keys (Backspace, +,/,-, *, C) cause the Input Action to be done and then go the state
Idle_Busy waiting there for the calculation acknowledgment. The state machine returns to the state
Idle either directly (if the calculation result is Ok) or via Error or ErrorClear state if the calculation
is erroneous; there are various different errors possible. The state machine waits in the error states
for keys: C and/or CE returning eventually via Idle_Return to the state Idle.

In the error states we see a an interesting use of the complement value (see [2]) replacing the
long OR condition of all keys matched that are relevant in this situation. It is especially important if
the number of keys grows for a more complex calculator.

The state machine has four done states Idle, Number, Error and ErrorClear where the state
machines waits for keys. Other states are busy states where the states machine waits briefly for
acknowledgment of the calculation.

To expand the functionality of this simple calculator we would like to add the cash register
function and a few 1-operand functions (1/x, %, sqrt).

Extension by a cash register function
The cash register function is a quite challenging problem. We use this term as it reminds one of

the functionality of the key + on a cash register which is used to repeat the last addition operation.
The windows calculator has some more sophisticated functionality whose sense is not quite clear.

7/12

Figure 2: The Calculator Simple state transition diagram

At least we have not found any description of that feature. On any calculator the use of the Equals
key (=) ends the current calculation. On many calculators repeated use of this key is just ignored.
On a Windows calculator the repeated use of the Equals key produces some results that seem at first
glance difficult to understand. Testing it long enough you discover the algorithm: it repeats the last
operation with the last operand, whereas the terms “last operand” and “last operation” apply to the
last operation performed on the Expression string (do not forget we stick to the normal arithmetic
priority rules). A possible reason for this feature is to calculate compound interest. Entering 1.06 * =
one sees the square of 1.06, that is 1.1236. Further use of the = key then multiples the result by 1.06
again each time, and it can show that 12 years compund interest at 6% will double a sum of money.
Te cash register function is illustrated by some examples shown in Table 4.

We decided to implement the algorithm used in the Windows calculator considering it as an
interesting challenge, without being sure what is it for. We even suspect that it is a side effect of the
calculation algorithm used and not a requirement.

To keep conformance with the general idea of processing strings in a calculator we decided to
work out an ExpressionT string for the cash register function that can be derived from the Extension
string used for calculations. Thus, if the Extension string changes the ExtensionT is actualized to be
prepared at any time for a repeated sequence of the Equals string. To realize this functionality we
need an object ExpressionT, a function PrepareExpressionT and a control value
Expression_CHECKED signaling the change of the Expression. In addition, we need the
information about the content of the Expression: if the Expression changes the function
ExpressionCheck is called and it has to be done at any time (see Figure 3). If the Expression is
empty the ExpressionT is fixed and cannot be changed, otherwise it has to be changed according to
the content of the Expression string. For processing of the ExpressionT we need an additional
function CalculateT.

8/12

Table 4: Examples for the cash register function

Expression Result Expression
T

Next results

2+7= 9 +7 16, 23
2+7+= 18 +9 27,36
2+7-= 0 -9 -9, -18
2+7*= 4 +2 6, 8
2-7*3= -19 -7*3 -40, -61
5/2= 2.5 /2 1,25, 0.625
1.05*= 1.1025 *1.05 1.157625, 1.21550625

Figure 3: The Calculator state table: the section Always

To control the call to of the CalculateT t state machine gets an additional state CalculateT where
the state machine goes always to the state Idle when the Equals key is matched. For details see the
details of the specification of the state machine. The new state transition diagram is shown in
 Figure 4 and the full details are found in the document Calculator.xml.

Standard calculator
The extension to 1-operand functions such as sqrt is relatively easy. These functions are simple

calculations so we call corresponding functions as input actions in the states Idle and Number.
Figure 5 shows the state transition diagram of the complete Standard calculator. The 1-operand
functions are treated as other functions: they trigger an Input Action in the present state and go the
busy state where they wait for an calculation result. The only change in the state transition diagram
is related to the error handling in the state Number. Depending on the calculation result and the user
reaction (the use of a key C or CE) an 1-operand function may require a return to the state Number
or a transition to the state Init. The additional states: Num_Busy, Num_ErrorClear and Num_Return
are required to solve the additional requirements.

The details of the state transition diagram are in the document Calculator.xml and the full
specification for an RTDB based execution system which performs the Calculator in the document
Standard.xml.

9/12

Figure 4: The Calculator Simple with added cash register function: state transition diagram

Testing
To test the design we have written a Calculator User Interface CalculatorUI (see Figure 6).

10/12

Figure 5: The Calculator Standard state transition diagram

Figure 6: User interface for the Calculator

It is a program written in C#. The user interface starts the Calculator and connects via tcp/ip
interface (RtdbClient DLL) to it. The Calculator is an RTDB based embedded application. It allows
testing of Calculator functionality. This study has been devoted to the control problem of a
Calculator. Therefore when writing the calculation function we did not care about the numerical
problems, just using the standard C++ arithmetic function for double float numbers.

Conclusions
The design, specification and implementation of a calculator illustrates well the concept of the

partition of control and data flow based on the virtual environment idea.

The basic idea of the software solution for a calculator is to parse the string created by keys
typed and execute it if appropriate. It sounds simple. The difficulty is the control of unexpected
sequences of keys. We may say that the parser should react appropriately detecting the unexpected
keys. The problem is that the definition of an unexpected key is context dependent. To recognize the
context by conventional programming we may use flags and this is the source of problems: the
control of flags leads to obscure programs that are difficult to develop and maintain. Experience
shows that we may become crazy working with such software. Flags in a program mean that the
software has a sequential character and the flags may be replaced by a state machine which is in a
rule far easier to understand than the flags.

The state machine required by any software is a result of analysis and design. Before we start to
specify a state machine we must work out a clear picture of the task that the state machine is to take
over. The aim of introduction of the state machine in software is not to eliminate all “if then else”
statements. No, the state machine is required to take over the sequential (state dependent) part of the
software control. For instance, the state machine should not be involved into checking whether the
divisor equals 0. If you start to define a state machine on that level you will get a monster that may
be as difficult to understand as chaotic software with flags. In the design phase you have to identify
the essential control problem that is to be realized by the state machine. The design is the most
difficult and responsible part of the project. A design determines the quality of the software, in that
case the quality of the control flow. The use of state machines in the software does not
automatically guarantees a better result. The correct use of state machines is the aim.

Failures in the existing calculators demonstrate that the programming approach used has been
not good. Even in such a not very complex software a programmer was not able to get a reliable
result, i.e. calculators working always in an intuitively reasonable fashion. If correctly applied, the
state machine concept allows us to produce software that works exactly as required. Any changes or
expansions can be done fairly easily without any danger of crashing the existing part. This is a
feature of StateWORKS valid when applied to much larger projects.

We have discussed the essential phases of a project:
- Defining the application

- Designing the control system

- Specifying the state machine

StateWORKS is a system generating a true executable specification. It is achieved by
“transforming” the real signals into the virtual environment. The actual specification of the system
behavior modeled by state machines is done using control values and action defined for the RTDB
objects.

The state machine as designed could be a good starting point to expand its functionality to the
Windows Scientific calculator. In principle, it requires addition of functions for the other 1-operand
keys. This means that the state machine diagram should change only slightly if ever.

11/12

References
1. Wagner, F. et al., Modeling Software with Finite State Machines – A Practical Approach,
 Auerbach Publications, 2006.

2. The technical note “Complement control values in the VFSM concept”.

Appendix 1. Output Function declarations
int Parse(CItem* pOwner, int nVO)
// The function recognizes the content (character) of the object Key and
// returns an enumeration value characterizing the character.
// It is used also to perform some auxilary functions like:
// ClearDisplay and PrepareExpressionT.
// Input: pOwner -> a pointer to the I/O UNit containing the RTDB objects
// nVO -> a parameter determined by the state machine Output name:
// see enumeration ParseFunction
// Output: Return value of the type ParseResult

int Calculate(CItem* pOwner, int nVO)
// The function selects a parser/calculation function to be performed.
// The selected functions require the Key value; if the Key value is
// an empty string the function returns immediately with
// CalculateResult_Ignored.
// Input: pOwner -> a pointer to the I/O UNit containing the RTDB objects
// nVO -> a parameter determined by the state machine Output name:
// see enumeration CalculateFunction
// Output: Return value of the type CalculationResult

int ExpressionCheck(CItem* pOwner, int nVO)
// The function recognizes the content of the object Expression and
// returns an enumeration value indicating whether its is empty or not.
// Input: pOwner -> a pointer to the I/O UNit containing the RTDB objects
// nVO -> a parameter determined by the state machine Output name:
// see enumeration ExpressionResult
// Output: Return value of the type ExpressionResult

12/12

	Introduction
	Requirements
	Design
	The calculator control system
	The RTDB based control
	RTDB objects required
	Control values
	Parsing the key

	Output names
	Building operands
	Calculating operations

	State machine specification
	Simple calculator
	Extension by a cash register function
	Standard calculator

	Testing
	Conclusions
	References
	Appendix 1. Output Function declarations

